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1. History of lensing
Newtonian light deflection:
Henry Cavendish 1786, Johann v. Soldner 1801

Henry Cavendish
(1731 – 1810)

Johann v. Soldner
(1776 –1833)

δ =
2GM

c2R
, δ� = 0.87′′δ



Einsteinian light deflection:
Albert Einstein 1915

Albert Einstein
(1879-1955)

δ =
4GM

c2R
, δ� = 1.73′′δ



Confirmation of Einsteinian light deflection:
Arthur S. Eddington 1919

Arthur S. Eddington
(1882 – 1944)

Solar eclipse 1919

Principe: δ = 1.61′′ ± 0.40′′, Sobral: δ = 1.98′′ ± 0, 16′′

D. Lebach et al. (1995):

∣∣∣∣δ − δEinstein

δEinstein

∣∣∣∣ ≤ 0.02 %



Simulation with plastic lens:





Are multiple images or rings observable?

star lensed by star Albert Einstein (1936):

practically impossible to observe

galaxy lensed by galaxy Fritz Zwicky (1937):

very well possible to observe

Fritz Zwicky
(1898 – 1974)



Observation of multiple imaging:

D. Walsh, R. Carlswell, R. Weyman (1979)

Double quasar QS0 0957 +561

angular separation = 6′′

magnitude = 17m
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Redshift of quasar images: zQ = 1.4

Redshift of galaxy (lens): zL = 0.4







Q 2237 +030 (“Einstein Cross ”)



H 1413 +1143 (“Clover Leaf”)



B 1359 +154 (six images, three deflectors)



Observation of Einstein rings:

J. Hewitt et al. (1988)

MG 1131 +0456





SDSS J0946 +1006



Observation of giant luminous arcs:

R. Lynds, V. Petrosian (1986), G. Soucail et al. (1987)

Abell 370





RCS2 032727-132623



Weak lensing:
A tool for detecting dark matter in galaxy clusters
A. Tyson et al. (1990)



Bullet Cluster



Weak lensing:
A tool for tracing the large-scale distribution of matter

The cosmic web
S. Colombi and Y. Mellier (2014)



Microlensing:
A tool for detecting brown dwarfs, exoplanets etc.
B. Paczýnski (1986)





Search for exoplanets





2. The weak-field formalism of lensing
S. Refsdal, 1964
Assumptions:
•Time-independent situation
•Deflecting mass concentrated in a plane
•Euclidean geometry valid outside of this plane

ξ⃗

η⃗

α̂
DL

DO

source plane

deflector plane

θ

β

Lens map: deflector plane → source plane, ~ξ 7→ ~η



ξ⃗

η⃗

α̂
DL

DO

source plane

deflector plane

θ

β

•Angles β, θ and α̂ small

Lens map ~ξ 7→ ~η given by lens equation

~η =
DL +DO

DO

~ξ − DL
~̂α



ξ⃗

η⃗

⃗̂αDL

DO

source plane

deflector plane

θ⃗

β⃗

~η

DL +DO︸ ︷︷ ︸
=:~β

=
~ξ

DO︸︷︷︸
=:~θ

− DL

DL +DO

~̂α︸ ︷︷ ︸
=:~α

lens equation in dimensionless form: ~β = ~θ − ~α



Bending angle ~̂α is determined by two additional assumptions:

•For a point mass M at ~ξ′ Einstein’s formula holds

~̂α =
4GM

c2

(
~ξ − ~ξ′

)∣∣~ξ − ~ξ′
∣∣2

•The superposition principle holds

Then, for a surface mass density Σ
(
~ξ′
)
,

~̂α =
4G

c2

∫
R2

(
~ξ − ~ξ′

)∣∣~ξ − ~ξ′
∣∣2 Σ

(
~ξ′
)
d2~ξ′ =


∂V

(
~ξ
)

∂ξ1

∂V
(
~ξ
)

∂ξ2


where

V
(
~ξ
)

=
4G

c2

∫
R2

Σ
(
~ξ′
)

ln
∣∣~ξ − ~ξ′∣∣ d2~ξ′



All lensing features are coded in the lens equation ~β = ~θ − ~α :

• Multiple imaging is determined by how many ~θ1, . . . , ~θn
are mapped by the lens equation onto the same ~β.

• Brightness of images is given by the magnification µ,

µ−1 = det
(∂~β
∂~θ

)
Caustic points are characterised by µ =∞



Example: Point lens

~̂α =
4GM

c2

~ξ∣∣~ξ∣∣2
~β = ~θ − DL(

DL +DO

) 4GM

c2

~θ

DO

∣∣~θ∣∣2
With ~β = β ~e and ~θ = θ ~e :

β = θ − 4GMDL

c2
(
DL +DO

)
DO

1

θ



Einstein ring
(
β = 0

)
occurs at θE =

√
4GMDL

c2
(
DO +DL

)
DO

Lens equation can be written as

β = θ − θ2
E

θ

Two solutions for each β > 0,

θ± =
β

2
±
√
β2

4
+ θ2

E

i.e., there is double-imaging

Magnification

µ± =
1

1− θ
4
E

θ4
±

=
±
(
β ±

√
β2 + 4 θ2

E

)2

4β
√
β2 + 4 θ2

E



Calculate micro-
lensing light curve
for source moving
in a straight line:

β =
√
β2

1 + β2
2

β1 = θE
t

tE

β2 = θE um

umθE

β1

β2



Total magnification:

µ =
∣∣µ+

∣∣ +
∣∣µ−∣∣ =

u2
m +

t2

t2E
+ 2√

u2
m +

t2

t2E

√
u2
m +

t2

t2E
+ 4

11

t

µ

3. Schwarzschild lensing and generalisations

to other spherically symmetric and static



metrics

Schwarzschild metric:

gµνdx
µdxν = −

(
1− 2m

r

)
c2dt2 +

dr2

1− 2m

r

+ r2
(
dϑ2 + sin2 ϑdϕ2

)

m =
GM

c2

Lightlike geodesics in the equatorial plane:

(dr
dϕ

)2

=
c2E2r4

L2
− r2

(
1− 2m

r

)
E,L: constants of motion



Deflection angle:

rm

δ

dr

dϕ

∣∣∣∣
rm

= 0 =⇒

c2E2

L2
=

1

r2
m

− 2m

r3
m

π + δ = 2

∫ ∞
rm

rm dr√(
1 − rS

rm

)
r4 − r2

m r
2 + r2

m rS r

δ =
4m

rm
+ . . .



Circular lightlike geodesics:

dr

dϕ
= 0 ,

d2r

dϕ2
= 0 =⇒ L2

E2
= 27 c2m2 , r = 3m

Horizon:

r = rS = 2m

Light sphere (photon sphere):

r = rp = 3m



Circular lightlike geodesics (unstable):

dr

dϕ
= 0 ,

d2r

dϕ2
= 0 =⇒ L2

E2
= 27 c2m2 , r = 3m

Horizon:

r = rS = 2m

Light sphere (photon sphere):

r = rp = 3m



rO

α

Angular radius α of the “shadow” of a Schwarzschild black
hole:

sin2α =
27m2

r2
O

(
1− 2m

rO

)
J. L. Synge, Mon. Not. R. Astr. Soc. 131, 463 (1966)

rO = 1.05 rS rO = 1.3 rS rO = 3 rS/2 rO = 2.5 rS rO = 6 rS



Schwarzschild black hole produces infinitely many images:

rO

rL

rO

rL



Visual appearance of a Schwarzschild black hole



J.-P. Luminet (1979)



T. Müller (2012)



Perspectives of observations

Object at the centre of our galaxy:

Mass = 4.3× 106M�

Distance = 8.3 kpc

Synge’s formula gives for the diameter of the shadow ≈ 54µas

(corresponds to a grapefruit on the moon)

Object at the centre of M87:

Mass = 3× 109M�

Distance = 16 Mpc

Synge’s formula gives for the diameter of the shadow ≈ 20µas



Project to view the shadow with (sub-)millimeter VLBI:

Event Horizon Telescope (EHT),

Using ALMA, NOEMA, LMT, SMT, SPT . . .

ALMA EHT

Announcement of results expected ca. for January 2019



no scattering scattering, 0.6 mm scattering, 1.3 mm

No. 1, 2000 FALCKE, MELIA, & AGOL L15

Fig. 1.—Image of an optically thin emission region surrounding a black hole with the characteristics of Sgr A* at the Galactic center. The black hole is here
either (a–c) maximally rotating ( ) or (d–f) nonrotating ( ). The emitting gas is assumed to be in free fall with an emissivity proportional to r!2a = 0.998 a = 0∗ ∗
(top panels) or on Keplerian shells (bottom panels) with a uniform emissivity (viewing angle ). (a, d) GR ray-tracing calculations; (b, e) images seen byi = 45!
an idealized VLBI array at 0.6 mm wavelength, taking interstellar scattering into account; and (c, f) images seen for a wavelength of 1.3 mm. The intensity
variations along the x-axis (solid green curve) and the y-axis (dashed purple curve) are overlayed. The vertical axes show the intensity of the curves in arbitrary
units, and the horizontal axes shows the distance from the black hole in units of Rg, which, for Sgr A*, is cm ∼ 3 mas.113.9# 10

Indeed, this is consistent with the observed 0.8 mm–size limit
being greater than 4Rg for Sgr A* owing to a lack of scintillation
(Gwinn et al. 1991). The presence of a rotating hole viewed
edge-on will lead to a shifting of the apparent boundary (by
as much as 2.5 or 8 mas) with respect to the center of massRg
or the centroid of the outer emission region.
Interestingly, the scattering size of Sgr A* and the resolution

of global VLBI arrays become comparable to the size of the
shadow at a wavelength of about 1.3 mm. As one can see from
Figures 1c and 1f, the shadow is still almost completely washed
out for VLBI observations at 1.3 mm, while it is very apparent
at a factor of 2 shorter wavelength (Figs. 1b and 1e). In fact,
already at 0.8 mm (not shown here), the shadow can be easily
seen. Under certain conditions, i.e., a very homogeneous emis-
sion region, the shadow would be visible even at 1.3 mm
(Fig. 1f).

3. HOW REALISTIC IS SUCH AN EXPERIMENT?

The arguments for the feasibility of such an experiment are
rather compelling. First of all, the mass of Sgr A* is very well
known within 20%, the main uncertainty being the exact dis-
tance to the Galactic center. Since, as we have shown, the
unknown spin of the suspected black hole contributes only
another 10% uncertainty, we can conservatively predict the
angular diameter of the shadow in Sgr A* from the GR cal-
culations alone to be ∼ mas, independent of wavelength.30" 7
As seen in Figure 1, the finite telescope resolution and the
scatter broadening will make the detectability of the shadow a

function of wavelength and emissivity; however, the size of
the shadow will remain of similar order, and under no circum-
stances can it become smaller.
The technical methods to achieve such a resolution at wave-

lengths shortward of 1.3 mm are currently being developed,
and a first detection of Sgr A* at 1.4 mmwith VLBI has already
been reported. The challenge will be to push this technology
even further toward 0.8 or even 0.6 mm VLBI. Over the next
decade, many more telescopes are expected to operate at these
wavelengths. Depending on how short a wavelength is required,
the projected timescale for developing the necessary VLBI
techniques may be about 10 yr. A fundamental problem pre-
venting such an experiment is not now apparent, but in light
of our results, planning of the new submillimeter telescopes
should include sufficient provisions for VLBI experiments.
A potential problem with our model may occur if has anjn

inner cutoff that is larger than that of the horizon, making the
shadow larger than predicted due to a decrease in emissivity
rather than to GR effects. However, first of all, the truncation
of accretion disk emission at the marginal stable orbit isrms
somewhat arbitrary (Cunningham 1975), and secondly, if it
exists, such a cutoff would likely be frequency dependent, while
there will be a frequency-independent minimum radius due to
the GR effects we have described. Another problem could be
the unknown morphology of the emission region. Anisotropy,
strong velocity fields, and density inhomogeneities would make
an identification of the shadow in an observed image more
difficult. However, inhomogeneities are unlikely to be a major

From H. Falcke, F. Melia and E. Agol:
Astrophys. J. 528, L13 (2000)

The observation of the shadow is NOT an ultimate proof
that there is a black hole!



Black hole impostor: Ultracompact star

Dark star with radius between 2m and 3m

rO

α

Shadow indistinguishable from Schwarzschild black hole

Ultracompact objects are unstable, see

V. Cardoso, L. Crispino, C. Macedo, H. Okawa, P. Pani:
Phys. Rev. D 90, 044069 (2014)



Black hole impostor: Ellis wormhole

H. Ellis: J. Math. Phys. 14, 104 (1973)

gµνdx
µdxν = −c2dt2 + dr2 + (r2 + a2)

(
dϑ2 + sin2ϑdϕ2

)

Angular radius α of shadow: sin2α =
a2

r2
O + a2



Exact lens map for spherically symmetric and static metrics
[VP: Phys. Rev. D 69, 064917 (2004)]

gµνdx
µdxν = e2f(r)

(
− c2dt2 + S(r)2dr2 +R(r)2

(
dϑ2 + sin2ϑdϕ2

))

r = rO

r = rL

ϕ = 0

Θ

Φ

∂r∂ϕ

Φ = R(rO) sin Θ

∫
rL

rO

S(r) dr

R(r)
√
R(r)2 − R(rO)2sin2Θ



Example 1: Schwarzschild spacetime:

S(r) =
(
1− 2m

r

)−1
, R(r) =

r√
1− 2m

r

Θ

Φ

δ

π

2π

3π

4π

5π

Lens map Θ 7→ Φ for 2m < rO < rL

Infinite sequence of images converges towards boundary of
the shadow



Example 2: Ellis wormhole:

S(r) = 1 , R(r) =

√
a2 + r2

Θ

Φ

δ

π

2π

3π

4π

5π

Lens map Θ 7→ Φ for −∞ < rO < rL

Infinite sequence of images converges towards boundary of
the shadow



Example 3: Barriola-Vilenkin monopole
M. Barriola, A. Vilenkin: Phys. Rev. Lett. 63, 341 (1989)

gµνdx
µdxν = − c2dt2 + dr2 + k2 r2

(
dϑ2 + sin2ϑdϕ2

)

p p

q

δ

identify

,

Such monopoles,

• are approximate solutions to Einstein’s field equation
with a triplet of scalar fields as the source

• may have formed during a phase transition in the early
universe



Lens map for the Barriola-Vilenkin monopole:

S(r) = 1 , R(r) = k r

Θ

Φ

π

π

2π

3π

4π

Lens map Θ 7→ Φ for rO < rL

Finitely many images, no shadow



Microlensing by a Barriola-Vilenkin monopole:

observer

path of light source

rL(t)

yL

Φ(t)

x(t)

y(t)

z(t)

 =

 v tyL
zL



t

D−2
lum



Other spherically symmetric and static metrics:

• Reissner-Nordström
• Kottler
• Janis-Newman-Winicour
• Black holes from nonlinear electrodynamics
• Black holes from Hǒrava-Lifshitz theories
• Black holes from f(R) theories

• Black holes from Horndeski theories
• Black holes from higher dimensions
• Black holes from braneworld scenarios , . . .

All of them have an unstable photon sphere (for some val-
ues of their parameters) =⇒ Qualitative lensing features are
similar to Schwarzschild

Quantitative features (ratio of angular separations of images,
ratio of fluxes of images) are different, see V. Bozza: Phys.
Rev. D 66, 103001 (2002)

The shadow is always circular. Its angular radius depends on
rO and the parameters of the black hole.



Analytic formulas for the shadow in a plasma

Arbitrary spherically symmetric and static metric:

VP, O. Yu. Tsupko, G. S. Bisnovatyi-Kogan:
Phys. Rev. D 92, 104031 (2015)

So far: only pressureless (“cold”) and non-magnetised plas-
mas have been considered

Hamilton formalism for light rays:

H(x, p) =
1

2

(
gµνpµpν + ωp(x)2

)
For derivation of Hamiltonian see e.g. VP: “Ray optics, Fer-
mat’s principle and applications to general relativity” Springer
(2000)



Example:

Schwarzschild spacetime

plasma frequency: ωp(r)
2 = β0 ω

2
0

(m
r

)3/2

a : rO = 3.3m

b : rO = 3.8m

c : rO = 5m

d : rO = 10m

e : rO = 50m 0.85

0.9

0.95

1

0 1 2 3 4 5

a

b

c

d

e



4. Kerr lensing and generalisations to other

non-static metrics

Shadow no longer circular

Shape of shadow can be used for discriminating between
different black holes

Shape of the shadow of a Kerr black hole for observer at
infinity:

J. Bardeen in C. DeWitt and B. DeWitt (eds.): “Black holes”
Gordon & Breach (1973)

Shape and size of the shadow for black holes of the Plebański-
Demiański class for observer at coordinates (rO, ϑO) (analyt-
ical formulas):

A. Grenzebach, VP, C. Lämmerzahl: Phys. Rev. D 89,
124004 (2014), Int. J. Mod. Phys. D 24, 1542024 (2015)

A. Grenzebach: “The shadow of black holes. An analytic
description.” Springer Briefs in Physics, Springer, Heidelberg
(2016)



Kerr metric in Boyer–Lindquist coordinates (r, ϑ, ϕ, t):

gµνdx
µdxν = %(r, ϑ)2

(
dr2

∆(r)
+ dϑ2

)
+

sin2 ϑ

%(r, ϑ)2

(
a dt− (r2 + a2)dϕ

)2

− ∆(r)

%(r, ϑ)2

(
dt− a sin2ϑdϕ

)2

%(r, ϑ)2 = r2 + a2 cos2 ϑ, ∆(r) = r2 − 2mr + a2 .

m =
GM

c2
where M =mass , a =

J

Mc
where J =spin

Plebański-Demiański black holes: Additional parameters

qe =el. charge , qm =magn. charge , ` =NUT parameter ,

Λ =cosmol. constant , α =acceleration

Consider in the following only the Kerr metric



Lightlike geodesics:

%(r, ϑ)2ṫ = a
(
L− Ea sin2 ϑ

)
+

(r2 + a2)
(
(r2 + a2)E − aL)
∆(r)

,

%(r, ϑ)2ϕ̇ =
L− Ea sin2 ϑ

sin2 ϑ
+

(r2 + a2)aE − a2L

∆(r)
,

%(r, ϑ)4ϑ̇2 = K − (L− Ea sin2 ϑ)2

sin2 ϑ
=: Θ(ϑ),

%(r, ϑ)4ṙ2 = −K∆(r) +
(
(r2 + a2)E − aL)2 =: R(r).

Spherical lightlike geodesics exist in the region where

R(r) = 0 , R′(r) = 0 , Θ(ϑ) ≥ 0 .

(
2r∆(r)− (r −m) %(r, ϑ)2

)2 ≤ 4a2r2∆(r) sin2 ϑ

(unstable if R′′(r) ≥ 0)



Photon region for Kerr black hole with a = 0.75m



Photon region for Kerr black hole with a = 0.75m



Photon region for Kerr black hole with a = 0.75m



Photon region for Kerr black hole with a = 0.75m



Photon region for Kerr black hole with a = 0.75m



The shadow is determined by light rays that approach an
unstable spherical lightlike geodesic.

Relation between constants of motion
(
KE =

K

E2
, LE =

L

E
− a

)
and celestial coordinates

(
θ, ψ

)
:

sin θ =

√
∆(r) KE

r2 − aLE

∣∣∣∣∣
r=rO

, sinψ =
LE + a cos2 ϑ+ 2` cosϑ√

KE sinϑ

∣∣∣∣∣
ϑ=ϑO

Constants of motion
(
KE, LE

)
for limiting spherical lightlike

geodesics:

KE =
16r2∆(r)

(∆′(r))2

∣∣∣∣∣
r=rp

, aLE =
(
r2 − 4r∆(r)

∆′(r)

)∣∣∣∣
r=rp

Gives boundary curve of the shadow θ(rp), ψ(rp) parametrised
with rp

Analytic formula for shadow allows to extract parameters of
the spacetime from the shape of the shadow



Vertical angular radius αv of the shadow (ϑ = π/2)

sin2αv =
27m2r2

O

(
a2 + rO(rO − 2m)

)
r6
O + 6a2r4

O + 3a2(4a2 − 9m2)r2
O + 8a6

=
27m2

r2
O

(
1 + O

(m
rO

))

A. Grenzebach, VP, C. Lämmerzahl:
Int. J. Mod. Phys. D 24, 1542024 (2015)

Up to terms of order O
(m
rO

)
, Synge’s formula is still correct

for the vertical diameter of the shadow

Shadow of black hole with a = m for observer at rO = 5m

ϑO = π
2

ϑO = 3π
8

ϑO = π
4

ϑO = π
8

ϑO = 0



No. 1, 2000 FALCKE, MELIA, & AGOL L15

Fig. 1.—Image of an optically thin emission region surrounding a black hole with the characteristics of Sgr A* at the Galactic center. The black hole is here
either (a–c) maximally rotating ( ) or (d–f) nonrotating ( ). The emitting gas is assumed to be in free fall with an emissivity proportional to r!2a = 0.998 a = 0∗ ∗
(top panels) or on Keplerian shells (bottom panels) with a uniform emissivity (viewing angle ). (a, d) GR ray-tracing calculations; (b, e) images seen byi = 45!
an idealized VLBI array at 0.6 mm wavelength, taking interstellar scattering into account; and (c, f) images seen for a wavelength of 1.3 mm. The intensity
variations along the x-axis (solid green curve) and the y-axis (dashed purple curve) are overlayed. The vertical axes show the intensity of the curves in arbitrary
units, and the horizontal axes shows the distance from the black hole in units of Rg, which, for Sgr A*, is cm ∼ 3 mas.113.9# 10

Indeed, this is consistent with the observed 0.8 mm–size limit
being greater than 4Rg for Sgr A* owing to a lack of scintillation
(Gwinn et al. 1991). The presence of a rotating hole viewed
edge-on will lead to a shifting of the apparent boundary (by
as much as 2.5 or 8 mas) with respect to the center of massRg
or the centroid of the outer emission region.
Interestingly, the scattering size of Sgr A* and the resolution

of global VLBI arrays become comparable to the size of the
shadow at a wavelength of about 1.3 mm. As one can see from
Figures 1c and 1f, the shadow is still almost completely washed
out for VLBI observations at 1.3 mm, while it is very apparent
at a factor of 2 shorter wavelength (Figs. 1b and 1e). In fact,
already at 0.8 mm (not shown here), the shadow can be easily
seen. Under certain conditions, i.e., a very homogeneous emis-
sion region, the shadow would be visible even at 1.3 mm
(Fig. 1f).

3. HOW REALISTIC IS SUCH AN EXPERIMENT?

The arguments for the feasibility of such an experiment are
rather compelling. First of all, the mass of Sgr A* is very well
known within 20%, the main uncertainty being the exact dis-
tance to the Galactic center. Since, as we have shown, the
unknown spin of the suspected black hole contributes only
another 10% uncertainty, we can conservatively predict the
angular diameter of the shadow in Sgr A* from the GR cal-
culations alone to be ∼ mas, independent of wavelength.30" 7
As seen in Figure 1, the finite telescope resolution and the
scatter broadening will make the detectability of the shadow a

function of wavelength and emissivity; however, the size of
the shadow will remain of similar order, and under no circum-
stances can it become smaller.
The technical methods to achieve such a resolution at wave-

lengths shortward of 1.3 mm are currently being developed,
and a first detection of Sgr A* at 1.4 mmwith VLBI has already
been reported. The challenge will be to push this technology
even further toward 0.8 or even 0.6 mm VLBI. Over the next
decade, many more telescopes are expected to operate at these
wavelengths. Depending on how short a wavelength is required,
the projected timescale for developing the necessary VLBI
techniques may be about 10 yr. A fundamental problem pre-
venting such an experiment is not now apparent, but in light
of our results, planning of the new submillimeter telescopes
should include sufficient provisions for VLBI experiments.
A potential problem with our model may occur if has anjn

inner cutoff that is larger than that of the horizon, making the
shadow larger than predicted due to a decrease in emissivity
rather than to GR effects. However, first of all, the truncation
of accretion disk emission at the marginal stable orbit isrms
somewhat arbitrary (Cunningham 1975), and secondly, if it
exists, such a cutoff would likely be frequency dependent, while
there will be a frequency-independent minimum radius due to
the GR effects we have described. Another problem could be
the unknown morphology of the emission region. Anisotropy,
strong velocity fields, and density inhomogeneities would make
an identification of the shadow in an observed image more
difficult. However, inhomogeneities are unlikely to be a major

From H. Falcke, F. Melia and E. Agol:
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Nature Astronomy 2, 585 (2018)



Analytic formula for the shadow in a plasma on Kerr

VP, O. Yu. Tsupko: Phys. Rev. D 95, 104003 (2017)

Example: ωp(r, ϑ)2 =
ω2
c

√
m3r

r2 + a2cos2ϑ
, ωc = constant
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