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Extended Theories of Gravity

Extended Theories of Gravity work very well in cosmology at early and
late epochs to address Inflation and Dark Energy issues

-A.A. Starobinsky, Phys. Lett.B 991,99 (1980)
-S. Capozziello, M. De Laurentis, Phys. Rep. 509,167 (2011),
-S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

They have been proposed to explain galactic and extragalactic dynamics
without introducing dark matter. PLANCK data do not exclude these
theories (PLANCK releases 2015,2018).

As a simple choice, one can assume a generic function f(R) of the Ricci
scalar R (in particular, analytic functions) and searches for a theory of
gravity having suitable behavior at small and large scale lengths.

This 1s a declaration of ignorance: We do not know a priori what is the
theory of gravity at UV and IR scales.

These theories need to be confirmed at different scales: for short
distances, Solar system, spiral galaxies and galaxy clusters, besides
cosmology

S. Capozziello, M. De Laurentis, Annalen der Physik 524, 545 (2012).



Further motivations

Explaining the observed galactic and extragalactic dynamics using without
DM by Newton potential corrections.

Possible new fundamental gravitational radii which play analogue role
in the case of weak gravitational field at galactic scales, as the
Schwarzschild radius for strong gravitational field in the vicinity of some
massive object (we have IR and UV gravitational radii).

New gravitational radii come from the further degrees of freedom of
Extended Gravity.

Explamning extragalactic phenomena, such as the baryonic Tully-Fisher
relation (BFT) of gas-rich galaxies and the fundamental plane (FP) of
elliptical galaxies withoutthe DM hypothesis.



f(R) gravity

Let us start from the action
A= [ d'ay=gIf(R) + Lol

The field equations are

1

R’uy — §g,u,/R —
L R - RIR) 4 (R — gm0 (R) S+ L
— f’(R) 29,u1/ UV Juv ]U(R)

Power - law case as a straightforward approach  f(R) = fyR"

with fop a dimensional constant.



f(R) gravity

» An important point is related to the choice of the power-law action for f{R)
that could appear non-natural in order to discuss deviations with respect
to GR. Being n any real number, it is always possible to recast the f(R)

ower-law function as
’ f(R) R

» If we assume small deviation with respect to GR, that is |g|] << 1, it is
possible to re-write a first-order Taylor expansion as

R'™¢ ~ R + eRlogR + O(€?)

» One can control the magnitude of the corrections with respect to the
Einstein gravity. This Lagrangian has been mvestigated from Solar System
up to cosmological scales. In particular, applications to gravitational waves
(Capozziello et al. 2008, Astropart. Phys.), binary star systems (De
Laurentis et al. 2012, MNRAS), and neutron stars have been mvestigated
(Astashenok, Capozziello, Odintsov 2014, PRD, 2015 JCAP).



f(R) gravity

Taking into account the gravitational field generated by a pointlike source
and solving the field equations in the vacuum case, we write the metric as:

ds® = A(r)dt* — B(r)dr? — r*dQ?

Combining the 00 — vacuum component and the trace of the field equations
in absence of matter, we get the equation:

R 1 "(R).
it reduces to: goo 400
2n — 1 n—1 dA(r) dln R(r)
— A _

Roo(r) = (r)R(r) B0 dr -

and the trace equation reads:

1 2—n .
LR (T) — R (fr)

3n



f(R) gravity

Expressing Roo and R 1n terms of the above metric, field equations become a
system of differential equations for A(r) and B(7).

A physically motivated hypothesis is

1 2®(r)
A(r) = =1
M =5m =1 2
A 1 solution 1 - .
general solution is B - _G_m L - p
- 2r e

The parameter 1s:

g — 12n? — Tn — 1 — v/36n* + 12n3 — 83n? + 50n + 1
B 6n? — 4n + 2

B=0 1s n=1 and then GR 1is recovered.
Let us search now for a fundamental motivation for power-law f(R) gravity




The Noether Symmetry Approach

Assuming again a static spherically symmetric metric of the form

ds* = A(r)c*dt* — B(r)dr* — C(r)dQ?

We recast the action considering the dimensionless curvature ¥ =R/R|

A= —foarr [ 1760 = A0- 01 v=gdta

The Ricci scalar can be expressed as

where the prime 1s the derivative with respect to . Varying with respect to y
gives the Lagrange multiplier

09

dy = Ix



The Noether Symmetry Approach

The point-like Lagrangian reduces to
2

L M Af X 012

VA | 2C

—VA[(2L3; + Cx) fx — Cf]

L=-— + [YA'CT+ C i A'X'+ 2A1,,,C'X | +

Assuming the regime R. >> r and the related weak field approximation, the
last two terms are both much smaller than L,/ f,. This allows to rewrite the
Lagrangian as

L:
L?\/f AfX 0/2
JA | 2C

+ FLAC + Cl o A+ 24F,C'x + 2A



The Noether Symmetry Approach

Solving the Noether vector equation means to find out the functions «;
which constitute the components of the Noether vector

LxL=0a;VyL+a;VyL=0

0 0
X =i~ +aj+
" 04 +a236]§

A general form of the Noether vector, related to the Killing equations of the
model, 1s:

] = klA_l_pla
g = koC 4 pa,
g = k3x + ps.

where k;, p; are constants



The Noether Symmetry Approach

The Lie condition 1s satisfied for

o = {2(1 —n)kA, 0, kx}, flix) =x"
That is for any f(R)= R" with n ¢ ;R a Noether Symmetry exists !
The related constant of motion X 1s
Yo = aiquf_L
= L2,n(n — 1)EA Y20\ 2[2(n — 1)AY' — A’Y]

In the case of MOND, for n = 3/2, C(r) = »’ and, at the lowest order of
perturbation, A(r) = 1 +2d/c?, the constant of motion is given by

3
Dl = §kr§zM




Extended gravity and flat rotation curves of spiral galaxies
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Observational constraints for r. from BTF relation
and circularvelocity

» Starting from the above solution, an excellent agreement between

theoretical and observed rotation curves of low surface brightness
galaxies has been obtained for f = 0.817.

» This can be framed into the BTF relation with the aim to show that the
new fundamental gravitational radius 7. can account for missing matter in
galaxies.

» Specifically, the empirical BTF relation is a universal relationship
between the baryonic mass of a galaxy and its rotational velocity of the
form Mp c< vc4. This follows from the fact that luminosity L traces
baryonic mass Mp through the mass-to-light ratio y. The BTF relation can
be recovered from power-law f(R) gravity.



The data from the Baryonic Tully-Fisher
relation of gas rich galaxies as a test for
ACDM and MOND considering

D - distance of the galaxy,

V. - rotational velocity,

M+ - mass of the stars,

M, - mass of the gas

(we used observational data from
McGaugh, PRL (2011), which are given
at the internet address:
http://www.astro.umd.edu/~ssm/data/
gasrichdatatable.txt)
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Observational constraints for r. from BTF relation
and circularvelocity

Circular velocity of a point mass, in the R” gravity potential, can be found
in the standard way, that 1s

dd
2 _
vi(r) = r—
which gives GM | r 5]
2iry = —/—— [14+(1— _
=S |1+ -5 (£)

(For a detailed explanation see Capozziello et al., MNRAS (2007)



Observational constraints for r. from BTF relation

and circularvelocity

Considering the Newtonian limit of f(R) gravity and discarding higher order
terms than O(2), the field equations for a perfect-fluid energy-momentum
tensor of dust (p =0) become:

(2)
V20 — RT — f"(0)V2R®) = xp

—3f"(0)V2R® — R? = xp

p - the mass density
X=87G/c*- the gravitational coupling
R®@) - the Ricci scalar assumed up to the second order approximation



Observational constraints for r. from BTF relation
and circularvelocity

Let us proceed step by step to demonstrate that BTF i1s given by the
gravitational radiusr,.

1. the Noether symmetries select a power-law for f(R) gravity. This 1s the
only general form of f(R) function showing symmetries.

2. In particular, we assume f{y) = y", after introducing the dimensionless
quantity y := LR, where R is the Ricci scalar, Ly is the length fixed by the
parameters of the theory, and » any real number.



Observational constraints for r. from BTF relation

and circular velocity
3. The trace of field Egs. can be rewritten as
/ 87TGL
f'Ox) x = 2f(x) +3L3 Af'(x) = 7 LT

By substituting the power-law, it becomes:

(n=1)  8rGM L3
X m M
"(n—2)—3nL2
X" ( ) M2 273
Here, we are assuming the weak field approximation with d/dy ~ 1/,
A~ — 1/r2, and matter density p ~M/r,

The second term 1n the Lh.s. of this Eq. ) In
1s larger than the first 1f Rr* <

2

2—n

In this approximation, the Ricci scalar corresponds to the Gaussian
curvature and then R =R, where R, is the Gauss curvature radius.
Immediately we have R. >> r, and then STGM

R(n_l) ~ —
2(n—1
371027“11]\; )




Observational constraints for r. from BTF relation

and circular velocity
4. At the second order, the Ricci scalar 1s R — _Evzq) _ zv - a

that can be approximated as R = —2®/(c2r2) = 2al/(c2r), with @ the
gravitational potential and a the acceleration. This gives:

c2r (87TGM> 1/(n=1)

a =~

212, \ 3ncr

~ _C(Qn—4)/(n—1)r(n—2)/(n—l)L]Tf (GM)l/(n—l)
which converges to a MOND-like accelerationa o< 1/r ifn —2=—(n —1),
that means n = 3/2.

1/2

: : , (CL()GM>

5. With this value of n, we get the MOND relation g &= —
r

In other words, the weak field limit of power-law f(R) gravity gives MOND
as a particular case.



Observational constraints for r. from BTF relation
and circular velocity

According to this derivation, the above characteristic length r. of R" gravity
can be related to the MOND acceleration constant a¢ using the following
expression GM

Te =] ——

ao
Assuming that rotation curve 1s flat within the measurement uncertainties at
some finite radius rp 1.€. V(75 = vs, then rr could be also related to a certain
MOND acceleration ar> ao. This gives vVaoGM  ag
rr = = — 7
d a f af c

Hence, the BTF relation of R" gravity expressed in terms of MOND
accelerations 1s

4&0@?

M = —

Ga? _1 (1 - B) (aoy

ar




Observational constraints for r. from BTF relation
and circularvelocity

We have to point out that, in the case of BTFR for spiral galaxies,
McGaugh (2011) has shown that, instead of standard MOND acceleration

constant ap, one should use a slightly different, empirically calibrated

constant a (where ag = 0.8a), while the formula is unchanged. Therefore, for
our calculations, we use the following expression:

Ga% |1+ (1 p) <ﬁ>5_
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Observational constraints for r. from BTF relation

and circular velocity
- we draw these lines at My (vy graph:

(i) MOND M, = vi*/(a )

(1) R” My =4 avitl(g ai® (1 + (1-B) (alar)P)?)
three R" cases: n=13/2,2,7/2 (correspondto f=0.518,0.667,0.817)
ao - constant for point source in infinity
a - constant for spiral systems
In the case of spiral galaxies, we have a instead of ao
empirical calibration is ap = 0.8a

(iii) ACDM Mb — 0.17 Mvir, Vf: Vvir

- formula for ACDM 1s taken from the paper by McGaugh 2012, AJ:
M,y = (4.6 -10° My, km™ s°) vy°
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Comparison between best fit BTF relations of gas-rich galaxies (for a
sample of galaxies), in MOND, R" gravity for values of n = 1.5, 2 and 3.5
(correspondingare 0.518,0.667 and 0.817, respectively) and ACDM.
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Open circles are observed data from McGaugh (2011).



The Fundamental Plane of Galaxies

The three parameters of FP: surface brightness I, effective radius r. and
circular velocity ve, for a sample of elliptical galaxies from Burstein et al 1997.



Basic theory of Fundamental Plane

The Fundamental

relation  between  the
properties of these galaxies:

logre=alogoo+ blogl.+ c

re - effective (half-light) radius (the
radius within which half of the

galaxy’s luminosity is contained)
oo - central velocity dispersion

I. - mean surface brightness within
the effective radius

Plane of
elliptical galaxies 1s an empirical
global

- there 1s the so-called "tilt" of the
fundamental plane, with respect to
the wvirilal plane expectation,
meaning that the coefficients of its
equation (a,b,c) differ from those
predicted by virial theorem (VT):
when written in logarithmic form,
the two planes appear to be tilted
by an angle of ~ 15° .

- VT prediction: a =2, b= -1
- Estimates from data (Bender et
al. 1992): a=1.4,b=-0.85

(see e.g.: G. Busarello, M. Capaccioli, S. Capozziello, G. Longo, E. Puddu,

The relation between the virial theorem and the fundamental plane of
elliptical galaxies, Astron. Astrophys. 320,415 (1997))



Recovering the fundamental plane from f(R)
-To recover the FP using R" gravity, we have to find relations between FP
parameters and values of f(R) potential. In this sense, the three addends of FP
have to be connected to f(R) parameters:
1. addend with r.: correlation between re and re (rc — from R” potential)
2. addend with 6y: correlation between a9 and vyir (Vvir - virial velocity in R")
3. addend with I.: correlation between I. and re (through the r¢/re ratio)
- for the mass distribution, we take into account the Hernquist profile:

p(t)=aM/Q2nr(r+a)), where a =re/(1 +2)

see L. Hernquist, ApJ 356,359 (1990)



The Data

- We use the data given in Table I by Burstein, Bender, Faber,
Nolthenius, Global relationships among the physical properties of stellar
systems, Astron.J. 114,1365(1997).

These data are the result of the collected efforts over the years

- data in ASCI format are given in table 'metaplanetabl’ see
arX1v:astro-ph/9707037

Obj Obj Dist log Ve logo, logr, logl,
Name ID# Code (Mpc) Obs Used (kpc) Lopc™?

column (5): log ve (km/s) “m @ B @ 6 ©® O ®
, NGC221 8 1 07 1903 1903 —095 347

column (6): log 6o (km/s) NGC315 14 1 1072 2546 2546 149 186
NGC720 56 1 358 2392 2392 084 234

column (7): log re (kpc) NGC777 64 1 994 2542 2542 113 2.16
NGC 821 67 1 377 2298 2298 092 206

1

NGC 1399 100 264 2491 2491 0.74 2353

column (8):log I (Lsun/ pc?)

for elliptical galaxies, the circular velocity mside effective radius is ve(re)
= 09, for other stellar systems v¢ # a9



Results

- we plot the graph v, (r¢) for ellipticals and for other galaxies

ellip'ticals .

other gal. » ]

XX

80

100

Newtonian
contribution

correction term from f(R)

Circular velocity ve as a function of effective radius re for a sample of
galaxies listed in Table 1 by Burstein et al 1997.



re - effective (half-
light) radius

oo - central velocity
dispersion

I, - mean surface
brightness within 7.

FP of elliptical
galaxies with
calculated circular
velocity:
dependence of FP
parameters (a,b) on
parameters of f(R)

gravity.

Results
The empirical FP relation log . = a log oo + b log I. + ¢ from f(R)
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Discussion and Conclusions

» We used power-law f(R) gravity to demonstrate the existence of a new
fundamental gravitational radius.

» This radius plays an analog role, in the case of weak gravitational field at
galactic scales (IR scales) as the Schwarzschild radius in the case of
strong gravitational field in the vicinity of compact massive objects (UV
scales).

» The radius emerges as a conserved quantity from Noether’s symmetries
that exist for any power-law f(R) function.

» Using this new gravitational radius, f(R) gravity is able to explain the
baryonic Tully-Fisher relation of gas-rich galaxies without DM
hypothesis.

» MOND is a particular case of f(R) gravity in the weak field limit.



Discussion and Conclusions

» The same radius is useful to address the FP of elliptical galaxies.

» The range 0.5< f < 0.8 (corresponding to 1.5 <n <3.5) is in a good
agreement with observations. These values agree with observational
constraints on f obtamned by fitting FP and MOND. We do not need
DM to explain baryonic Tully-Fisher relation, and even more, ACDM 1s
not in satisfactory agreement with observations.

» For elliptical galaxies r. is proportional to re

» Considering the definition of re, we can say that the effective radius
(defined photometrically as the radius containing half of the luminosity
of a galaxy) is led by gravity.

» In perspective, the whole galactic dynamics can be addressed by
Extended Gravity.

» Work in progress for Faber-Jackson relation, galactic potentials,
Boltzmann-Vlasov relation, and Virial Theorem.
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