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The Observed Universe Evolution
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Tuturefates (Zf tﬁe C[Cl?’é energy universe
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A Jaﬁetﬁom of theoretical models)!
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“..there are the ones that invent OCCULT FLUIDS
to understand the Laws of Nature. ‘Tﬁey will come to
conclusions, but they now run out into DREAMS
and CHIMERAS neglecting the true constitution of
things....

...however there are those that from the simplest
observation of Nature, they reproduce New Forces

(i.e. New Theories)... ”

From the Preface of PRINCIPIA (11 Edition)
1687 by Isaac Newton, written by
‘Mr. Roger Cotes




There is a ﬁmd'amenml' issue:

‘Are extraga(actic observations and cosmoﬁ)gy proﬁing
the breakdown of General Relativity at large (1R)

scales?




‘The problem could be reversed
-

“'We are able to observe on[y | .~ Dark Energy and Dark Matter
RSSO (/35 i /S NN Ly 7 S aS “sﬁoﬂcomings” quR
Results (f f[awed' yﬁysics?

The “correct” tﬁeory qf gravi could
i {

be derived by matching the largest

number of observations at
SCALES!

|Szlcce(emting behaviour (DE) and dynamical phenomena (DM) |




In order to extend General Relativity, we consider two main features:

= the geometry can couple non-minimally to matter and some scalar field;

. ﬁigﬁer than second order derivatives qf the metric may appear into

@namics

In the first case, we say that we are dealing with scalar-tensor gravity, and in the
second case with higher-order theories

A. A. Starobinsky, Phys. Lett. Bo1, 99 (1980).

S. quozzie[fo, Int. Jou. Mod. Tﬁys. D 11, 483 (2002) .

A. De Felice, S Tsujikawa, Living Rev.Rel. 13 (2010) 3

S. ;Z\?pozzieﬂb, ‘M. De Lavrentis, Phys. Rep. 509, 167 (2011).

S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011). 10



A genem( class of ﬁt’gﬁer-ord'er-sca(ar-tensor theories in four dimensions is given

Ey the action

S :/d4x \/—_g[F(R, OR,CR,...,0"R,¢) — %g“%;u(/);v +£<’">]

In the metric approach, the field " 1
equations are obtained by GH=G|rT" +387(F =GR
varying with respect to g, ey (674" — g8 )Goro
k [
= GW is the FEinstein tensor + ) 0) (8"h + g g ) (T,

and

LR

|
2
. . oF
n . =/ . S v _AO
QEZDJ< 5 ) X( aDlR);A °
j=0 ( .
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ion of GR is achieved assuming F =f (R), € = o, in the
action

The standard Hilbert-Einstein action is recovered for f (R) = R
By varying with respect to g, , we get

/ f(R) . / /
f (R)R,uv — Tg;w = V,u,vvf (R) — g,uva (R)

and, after some manipulations

[f(R)— f'(R)R]
{V,uvvf/(R) - g,uvaI(R) + 8y )

G
T (R)

where the dgmvimtiona[ contribution due to higher-order terms can be
reinterpreted as a “curvature” stress-energy tensor related to the form of f(R).

Such a tensor disappears for f(R )=R

12
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Considering also the standard perfect-fluid matter contribution, we have

KT(m) T(m)

3 | l Y / _ / Lﬂ_ (curv) af
Gop = f’(R)’Zgaﬂ[f(R) Rf (R)]‘l‘f (R);up = gupLf (R))+ f(R) _&[j/ m

{

) ) , ) is an ective  stress-
In the case of GR, identicallyvanishes while the ff

- "y energy tensor constructed
standard, minimal coupling is recovered for the .,

o by the extra curvature
matter contribution o

The peculiar behavior Zf f(R) =R is due to the particular form of the
Lagrangian itself which, even though it is a second-order Lagrangian, can be

non-covariant(y rewritten as the sum qf a ﬁ’rst-orc(er Lagrangian Ja[us a pure
d'ivergence term.

13



Trom tﬁe genem( action it is yosmﬁ(e to oEtam another interesting
case 5}/ cﬁoosmg
F=F(@)R—-V(¢), e=—1

The variation with respect to g, gives the second-order field equations

|

1
F(¢)G,uv — F(¢) |:R;w _ zR,u,vi| — _ET'I?U g,ngF(ﬁb) + F(¢);uv

The energy-momentum tensor related to the scalar ﬁ’e(cf is

1
T, = ¢.udin — S8uiadl’ + gV (@)

The variation with respect to d yrovufes the Klein-Gordon equation, i.. the field equation
for the scalar field:
Ugp — RFy(P) + Vp(¢) =

This last equation is equival'ent to the Bianchi contracted ic(entity
14



The weak ﬁe[cf [imit in f@{)-gmvity
, é Q < Db D ¢ "

We can deal with the Newtonian and the post-Newtonian [imit of f (R) gravity
adopting the spherical symmetry
The solution of field equations can be obtained considering the general spherically

symme’m’c metric;

ds® = gyrdxdxT

= goo(xo, r)dx02 —grr x°, rdr®-r?dQ,
In order to develop the Newtonian [imit, let us consider the perturbed metric
with respect to a Minkowskian backgroun g,, = n,, +hy,

( (2) (4)
t,r)=1+ t,r)+ t,r),
The metric entries can be d'e've(qoec[ as: 8ut(L,1) 8t (1) + 8y (1,7)

Wy | gt =-legr (6n),

g@@(t,r) :_rzy

| oo (L,1) = —r?sin0, 15



The weak field l[imit in f(R)-gravity

We assume, analytic Taylor expandable f (R) functions with respect to a certain value R
=R,
f”l

R
PR =Y LSRRy = fo+ iR+ fsR? 4 R+ .

In order to obtain the weak field approximation, one has to insert expansions into field
equations and expand the system up to the orders 0(0), 0(2) e O(4).

If we consider the O(2) - order r
f () fll‘R(z)—Zflgg,)r+8f2R’(,?)—f1rg(2) +4f2rR(2):O,

atgroximaﬂ’on, te,rr
t j;i’eﬁ{ eclguations in vacuum, fArR® -2fg? +8HLRP - firg? =0,
results to be | ,
< 2118 1('?;) —r
Tt is evident that the trace x|firR® - fig2). - figl?, + 4R +4forR}) ] =0,

equation provides a differential
equation with respect to the
Ricci scalar which allows to 2¢@ 47 [2 g? —rR®42¢2 4rgl? ] = 0. (33)
solve exactly the system at O(2)

- order

firR? +6f, [2RP +rR )| =0,

~

16



The weak ‘ie[c[ [imit in f@{)-gmvitg

Finally, one gets the general solution:

N
6/> —

where

& =

For limitf (R) > R, in the case of a
point-like source of mass ‘M, we recover the
standard Schwarzschild solution

"

o Y 8,(0)e"VE 8,010V
S TR T T sl e
o Y 8 (Iry=E+1leVE
8rr =~ +
3 hr 3¢r
Sa(0)Er+/=Ele'VE
6E2r
p@_ 810V 5y(1)y/ZTerV
{ r 267'

The two arbitrary Junctions of time 6,(t) and 8,(t ) have respectively the dimensions of

length~ and length=>

They are completely arbitrary since the differentialequation system contains only spatial
derivatives and can be fixed to constant values.

17



The weak field [imit in R)-gmvity

In order to match at infinity the e
‘Minkowskian prescription for the metric, | 52 = [1 _2GM  01(De ] e
one can discard the Yukawa growing hr 3¢7 /T
mode in and then we have: C ] [, 26M si()(ry/—¢+De 'V,
N 1+ drc—r<dQ,
> fir 3¢r
R = 01 (ne” VY .
\ r

In particular, since g, = 1+2@grav = 1+ g(2),;, the gravitationalpotential of
f R)-gravity, analytic in the Ricci scalar R, is

GM S1(t)e "V
fir 6¢r

CI)grav ==

This genem[ result means that the standard Newton yotentia[ is achieved on(y in the
yarticu[ar case f (R) = R while it is not so ﬁ)r any ana[ytic f (R) models

The parameters f, , and the function 8, represent the deviations with respect the
standard Newton potentia

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012) 8



The weak field l[imit in (R)-gmvity

We note that the § , 1 fl ~ and can be inte(preted' also
parameter can be related to \_> m-=(3¢) =- 35 .y asan gﬁfective [engtﬁ L

an gﬁ%ctive mass Eeing
GM _r
(D(r)z—(1+5)r(1+5e L) <J

The second term is a modification of the gravity including a scale length

‘Jf & = 0 the Newtonian yotentia( and the standard, gmvitationa[ cou}a[ing are recovered.,
oGM )
Assuming 1+6 = f1, & is related to 81(t ) through O1="—7 (1 n 5\,

‘Under this assumption, the scale length L could naturally arise and reproduce
several yﬁenomena that range from Solar System to cosmolbgica( scales.

19
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‘Uncfersmmfing at which scales the mocﬁfications to General
Re[ativity are working or what is the weight of corrections to
gmvitationa[ Jootentia? is a crucial Jaoim‘ that could confirm or
rule out these extended ajojoroacﬁes to gmvimtionaf interaction.

od oo oo

20
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Stellar structuressand Jeans ins?aﬁ?@y

R — S ———
It is usua[@ assumed that the Jynamics qf stellar oEjects is comy&zte@ determined By the
Newton law qf gravity

Considerin, yotentia( corrections in strong ﬁ’e(cf regimes could be another way to check the
viability of Extended Theories of Gravity

In particular, stellar ;ystems are an ideal laboratory to look for signatures of possible
modifications of standard law of gravity

Some observed stellar systems are incompatible with the standard models of stellar
structure : these are peculiar objects, as star in insmﬁi(i? strips, protostars or

anomalous neutron stars (the so-called “magnetars” with masses larger than their expected

Volkoff mass) that could admit dynamics in agreement with modified gravity and not
consistent with standard General Relativity (e.g. PSRJ 1614-2230).




=Stellar structuresand Jeans ins?aﬁmy

Field equations at O (2)-order, that is at the o0 R?
Newtonian level, are oo

=377(0) A R? — R® = XTO),
,fn(R)zﬁ(ﬂ(2)+0(4))=ﬁ(0)+ﬁ+1(0)9{(2) £, / ( )
The energy-momentum tensor for a jaeqﬁct ffuid' is

f”(O) A R? = XT,(L?)

- (6 T p)u,u,uv — P8uv:
The pressure contribution is negﬁ}giﬁﬁa in the fie(d' equations qf Newtonian

qpproximation R

AD+— 5 + f1(0) AR® = —Xp

3f"(0) A R® + R® = — Xp,
S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)

moc@’fied' Poisson equation

For f"(ﬁR) = 0 we have the standard Poisson equation AD = —47Gp
From the Bianchi identity we have ThY =0 — dp 1 (p 0 d1ng,,
H o xk axk 5



=Stellar structuresand Jeans ins?aﬁ?ﬁ’f_y

Let us suppose that matter satisfies a polytropic equation p =K YpY

we obtain an integro-differential equation for the gravitational potential , that is

2 §/&o ) )
d w(z) n gd’lU(Z) 4+ w(z)" _ me l/ ds' ' {e—m£0|z—z | e—m§o|z+z |}w(zl)n
0

dz? z dz 8 =z
Lané-FEmden equation in f(ﬂ)-gmvity N TS
L N “'\
We find the radial profiles of the NN
7 2 )2 )3 i ¥
gravitational potential by solving for - W NN,
o osf By,
some values of n (polytropic index s | NN
04 i ':. ® \‘:‘
New solutions are yﬁysicaﬂzy relevant | IR W
I3 4 ] RO .
and could explain exotic systems out of 02} A AN
I Y A
Main Sequence (magnetars, variable | NN
stars). S BT R e ey

S. Capozziello, M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011) 53



Steflar structuresand Jeans ins?aﬁi’l@y

~-_

p— — | ——
We have also compared the behavior wi e temperature of the Jeans mass for
various types qf interstellar molecular clouds

———.
- —

N 6 1200 -

M, = 6\/ M, 1000

(3 + v21) S 800}

In our model the (imit (in unit of mass) to start ) igg
the co[[a}ase tgf an interstellar cloud is lower than ool ]
tﬁe c[assica one acﬁ/antaging tﬁe structure O b et ]

, 0 10 20 30 40 50 60
formation. T/IK]

S. Ca}oozzie(fo, M. De Laurentis 1. De ‘Martino, M. Formisano, S.D. Odintsov
Phys.Rev. D85 (2012) 044022

Subject T (K) n (108 m ?) m M; (Mg) M‘, (M)
Diffuse hydrogen clouds 50 5.0 I 795.13 559.68
Diffuse molecular clouds 30 50 2 32.63 58.16
Giant molecular clouds 15 1.0 2 206.58 14541
Bok globules 10 100 2 11.24 791

24




‘Acfcfressing stellar ?stems Ey this a}o}oroacﬁ could be extreme[y
important to test o servationa[fy Extended Theories of Gravity.
See eg. Astashenok, Capozziello, Odintsov JCAP 1312 (2013) 040 where
anomalous neutron stars are described By f(iR)-gmvity.




Quadrupolar gravitational radiation in f(R)-gravity -

e

S — o
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We calculate the Minkowskian (imit for a class of analytic f(R)-Lagrangian

FR) =S 0 (R Ry o+ iR + S FoR +

n

Field ebgucm’ons at the first order of approximation in term of the

perturbation , become:

RW X
/| p) | i [p) m] _ X0
fO !R;w o 2 ’7;41'] -~ Jo [R,,uv o ’7;1\'DR } - jT;w
The explicit expressions qu the Ricci’ R,Etlv) = hf e — Oy — 1Ny,
tensor and scalar, at the first order in the |
, , RY =h?" — Oh
metric perturbation, read Y = N5 —

S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011) 26



Quadrupolar gravitational radiation in f(R)-gravity -

e

— ——
—— e —
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1f we assume that the source is localized in a finite region as a consequence
outside this region T,, = 0, and then we have that RY Ol — 0
W Ky —

With this assumption we can calculate the energy momentum tensor qf
gravitational field in f(R)-gravity adopting the definition given in Landau and
Lifshitz (1962)

tz\”:f/{[ - 7= (v—g )]gaw—ga,a}—f”}?, 0T =) f
agPU,/\ —9g ¢ (9gpg,>\§ Po 89/)0’)\5 P, 'gagpg)\& pa;

The energy momentum tensor consists of a sum of GR contribution plus a
term coming from f (R)-gravity :

A ] 4 A I 4 A
ta — fO[a|GR + fot

« | £(R)

M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011) 27



Quadrupolar gravitational radiation in f(R)-gravity

S — ——
——
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—

...in term qf the yerturﬁation his

) ! 47 " A A 1 N
t, ~ oty +1o {(h{;jj, — Oh) [h‘gy —hy — +§o1(h{;jj, — Dh)]

PO¢& Nig

—hPT W WS, WO — Dh"h,x}.

In the weak field limit, the source h,, is written as function of time t' =t —r, and
plane wave approximation

. , . 1 .\ 2
the energy momentum t, = fok" ks (h/mh/)(f ) ) 09 (kl’ Kg h/)ﬂ)

4 N _/

tensor assumes the form: ~ -—

CR f(R)
—

‘M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011)
De Laurentis M., De Martino 1., 2013, MNRAS., (foi:10.1093/mnms/stt216 28



Quadrupolar gravitational radiation in f(R)-gravity -

—

e ——— s
——

—

In order to calculate the radiated energy of a gravitational waves sources, we
consider the averzge energy flux dE/dt away from the systems and the momenta of

the mass-energy istribution

Finally the result is

dE Y ] i . for =0 and dE G /"
<%> - % <f0 (Q Q'J) —Jo <Q QU)> fo=4/3 | <E> :E<Q1QU>

(total) GR f(E) — (GR)

The massive mode
A4 contribution is evident,
This means that this ﬁm’ﬁer term cyﬁ%cts both

<(1E > _ Gy <<Q” Qu) _ % (Q” Q, J)> the total energy release and the wavgform.

dt 60

(total)

This could represent a furtﬁer signature to investigate
such theories in the GW strong-field regime. -,



App lication to the binary s stems

Assuming Keplerian motion and the orbit in the (x; y)-plane
the quadrupole matrix is

Qij = pr’ (

2 / . / . ‘:‘

cos” Y sin 1 cos Y
. f / e 2y

sin 1 cos ¥ s~ Y y

the time average qf the radiated power

1
T ol 27 7./, (ol . C 2 oy —
<dE->:l/ LAEW) %/ dy dE(v)  where j _ <Gm> (1)
0 0

| Lo

b

(1 4 €cos))?

dt T dt o dt a’
7 — 3 (T -3 ,u.G'% (e + 'm.p')%
The time derivative *= 720\ 2x 5(1—n2)5 x
thﬁe Orgit'a[ f// 21
' | ‘o (37€e* +202€2 + 96) — ——
Joemoc( X [fo (37€® +292¢% + 96) 20 2>

x (891€® + 28016€° + 82736€* + 43520€> + 3072)]

we will go on to constrain the f (R) theories estimatingf”, from the comparison between the
theoretical predictions of dT; and the observed one. 30



Application to the binary systems: The PSR 1913 + 16 case

" 4

qlSing tﬁe 'Va[ueSfor tﬁe §P€C’Efic PSR 1913 + 16 Chacteristic features
example of PSR 1913 + 16 to Pulsar mass m = 1.39M,
, Companion mass M =1.44M,,
numerically evaluate the above Inclination angle sini = 0.81
p Orbit semimajor axis a=8.67 x 10'°cm
equatwns Eccentricity ¢ =0.617155
Gravitational constant G=6.67 x 10°®dyncm? g2
Speed of light =299 x10"%cms!
gxw0® Orbital decay rate for PSR,
1913 + 16 in f(R)-gravity.
‘Uggper [imit set by Taylor et
s al. in dashed line. GR limit
3r 3 13
S el 3.36 % 1072 in dotted (ine
° Ll and the lower [imit set by
s Tt c?/l'or et al. in dashdot [ine.
1 A+ Gt . Solid line is AT @
05 ' mm 1 | ower limit set by HT|_|
== = Upper limit set by HT
0 1 1 1 1 1 1 1

1 |
-3 -28 -26 -24 -22 -2 -18 -16 -14 -12 -1

' 10° } ]
; . A class of f(R) agrees with {?m



Extended Theories of Gravity can also impact on the estimate of
DM properties on ga[actic scales

Modified [gmvity could be a possible way to solve the cusp/core

and similar yroﬁfems of the DM scenario without asﬁing for ﬁuge
amounts qf DM




Yukawa-[ike corrections are a genem[feature, in the fmmeworﬁ (f f (R)-gravity

is the smrtmg point for the
(1 e ’L—‘) computation of the rotation
curve qf an extended systerm.

This equation ‘ ___GC
q iy ©(r) = ——

Conszdérmg a genem[ expression derived for a generic yotentm( giving rise
to a sqpamﬁ[e force

Fplp,r) = G’f#(mfr ()

S

with u=M/Me, n =r /r; and (Me, 1) the Solar mass and a characteristic length
of the problem

In our case, fu =1 and: () = (1+ n ) exp (—n/nr)

ne) (1+8)n?
W’itﬁ Ne =.£/1’5 33




Using cylindrical coord'mates(’R,e z) anc[ the corre.fponcﬁng (ﬁeswn[ess
variables (n,8) (with T = z/rs ), the total force then reads:

Gpors

Fi) = 1+6

(0. @) oo T
n'dn’ f e fo fr)pm',0",hae’
with “p = p/po, po a reference density, we have

A=[n2+n%-2nm cos@-0")+(—)?]"*

‘For oEmining axisymmetn’c systems, one can set p~ =p "n0.

S. Ccyoozzie[fo, ‘M. De Laurentis Ann. Tﬁys. 524, 545 (2012) »
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Testing spiratgatanies———
——— = 4 S

e

The systems we are considering here are spiral galaxies which will be modeled as
the sum of an infinitesimally thin disc and a spherical halo, and then
the scaling radius r, will be the disc scale length R

Under tﬁ’ese assumptions, v2(R)
the rotation curve may be ,
P) . G R o0 o0 T
obtained as: _ 11)0+(;i77 0 n’dn’f ﬁ(n,’(,)d(,fo . (Ag)dO

Witﬁ AO — A(Q = ( — O) — [TIZ +T],2 _znnlcosgl +C/2]1/2

It is evident that the total rotation curve may be split in the sum of the
standard Newtonian term and a corrective one disappearing for L o, i.e.
when ETGs have no deviations from GR at galactic scales.

S. choozzie[fo, ‘M. De Laurentis Ann. Tﬁys. 524, 545 (2012) .




'R 7R

K o e E—
!g-.;.—r—’--

The total rotation curve is:

V(Z,(R,Md,pi.)

= vy (R, Ma) + vy (R, pi) + vy (R,Mg) + v}y (R, pi)

Md is the disc mass, d andh denote disc and halo related quantities, while N and'Y
refer to the Newtonian and Yukawa-like contributions

One may model a spiral galaxy as the sum of a hick disc and a spherical halo
without DM contribution.
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- 1 Figure 4 Examples of simulated rotation curves with superim-
120 7 posed theoretical curves. From left to right, model parameters
100} q are (log Mg ,log Myir, ¢, fpm,lognL) = (1115, 12.90, 10.24, 0.47,

. ! {1 0.36),(10.90, 11.76, 14.77, 0.45, —0.92), (10.04, 12.10, 13.76, 0.54, 1.11),
80 3 41 while the simulation parameters are set as discussed in the text.
60 F ] Note that, depending on how the model parameters are set, it is

i 1 possible to get rotation curves which are flat, decreasing or in-
40 ] . . . . . . . ] creasingin the outer region.
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The modified potential can be tested also for elliptical galaxies checking whether it
is able to provide a reasonable match to their kinematics.

Such se(f-gmvitating systems are ve? different with respect to syiml} SO
aJJressing both classes qf oEjects under the same standard could be a

fundbmentaf step versus DM

One may construct equilibrium models based on the solution of the radial Jeans
equation to interpret the kinematics of planetary nebulae

We use the inner long slit data and the extended planetary nebulae kinematics for
three galaxies which have published dynamical analyses within DM halo

frameworﬁ (see Ne apolitano, Capozziello, Capaccioli, Romanowski Ap] 748 (2012) 87).

Tl hey are:
NGC 3379, (DL +09) , NGC 4494 N +09, NGC 4374 (N + 11).
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It is shown the circular ve@city gf the modi:ﬁeJ yotentia(
asa ,ﬁmction qf tqﬁ\j}ootential:pammeters Landé for
g

NGC 4494 and NGC 4374.

From a theoretical point of view, 6 is a free parameter
that can assume positive and negative values.
Comparing results for spirals and ellipticals, it is clear
that the morphology of these two classes of systems
strictly depends on the sign and the value of 6.

Veire (km/s)

Vare (kmy/s)

 N4374

0 100 200 300 400 500 600 700 800
r |arcsec]

Figure 6 Circular velocity produced by the modified potential for
the two galaxies N4494 (top) and N4374 (bottom). In both cases
the M/ %, has been fixed to some fiducial value (as expected
from stellar population models and Kroupa 2001 IMF): M/ ¥, =
4.3Y; g for NGC 4494 and M/ ¥, =5.5Y 5 y for NGC 4374. The
potential parameters adopted are: L = 250" and §=0, -0.65, -0.8,

-0.9 (lighter to darker solid lines) and L = 180" and §=-0.8 (dashed

lines). The dotted line is a case with positive coefficient of the
Yukawa-like term and L = 5000" which illustrates that positive
o cannot produce flat circular velocity curves. Finally some refer-
ence Navarro-Frenk-White (NFW) models are shown as dot-dashed
lines [108]. 39



The problem of fitting a modified potential (which is formally selfconsistent

implies the same kind of degeneracies between the anisotropy parameter,

B = 1-0y/62r (Where o and o, are the azimuthal and radial dispersion components in
spherical coordinates), and the non-Newtonian part of the potential (characterized by two
parameters like typical dark haloes) in a similar way of the classical mass-anisotropy
degeneracy

These degeneracies can be alleviated via higher-order Jeans equations including in the

dynamical models both the dispersion (op) and the kurtosis (k) profiles of the tracers

‘Under spherical assumption, nonrotation and B = const (corresponding to the family of
d'istriﬁutio;z/ﬁmctions 1 (L) = f,L72F, the 2-nd and 4-th moment radial equations can
Y

be compactly written ¢

s(r) = r—zﬁfooxzﬁH(x)dx

wﬁfzre s(r) ={po2;pv4, }, B is the o g respectively for the
anzs{otrqpy parameter, H() = { p—:3p—1?2 } dispersion and kurtosis
an dr dr

equations 40



The overall match of the model curves with data is remarﬁaﬁfy gooc[ and it is comjoamﬁfe
with models obtained with DM mocfe(ing (gmy [ines)

g e T T —————re————
300 N44904 41F N33790 -
$200 ]
z ]
L 4
% - -
=100
8 __1____1
31 == 5
9 :
OAA‘AI(.)O-AA‘2(.)O“‘A3(.)OAA‘A 0 100 200 300 OAA-AI(.)O“AAZ(.)OA‘A‘B’(.)OAA‘A

Radius [arcsec]

Figure 7 Dispersion in kms (top) and kurtosis (bottom) fit of
the galaxy sample for the different f(R) parameter sets: the
anisotropic solution (solid lines) is compared with the isotropic
case (dashed line — for NGC 4374 and NGC 4494 this is almost

Radius [arcsec]

Radius [arcsec]

indistinguishable from the anisotropic case). From the left, NGC
4494, NGC 3379 and NGC 4374 are shown with DM models as gray
lines from N+09, DL+09 (no kurtosis is provided), and N+114¢spec-
tively [108].



The ma?inafized' confic(ence contours qf the main two
potential parameters for the three ga(axies
there seems to be a yossiﬁ[e increasing

trend qf & with the orbital anisotropy

Table 4 Model parameters for the f(R) potential.

Galaxy Mag (band) Resr MIL, L S i} x?/dof
NGC3379 -19.8(8) 2.2 6(7) 6 -0.75 0.5(<0.8) 14/25
NGC4374 -21.3(v) 3.4 6(6) 24 -0.88 0.01(0.01) 14/39
NGC4494 -20.5(8) 6.1 3(4) 20 -0.79 0.5(0.5) 18/43

Notes — Galaxy ID, total magnitude, effective radius and model parameters for the unified solution. DM-based estimates for 0.0k
M/ %y and B (NGC 3379: DL+09; NGC 4374: N+11; NGC 4494: N+09) are shown in parentheses for comparison. M /%, are )
in solar units, Regr and L in kpc. Typical errors on M/.%; are of the order of 0.2M /%, and on f of 0.2 (see also Fig. 8). The*

small 2 values are mainly due to the large data error bars.

such a function could be related to second order effects
connected to anisotropies and non-homogeneities which
could trigger the formation and the evolution of stellar
systems

This results can have interesting implications on the
cayaﬁiﬁ’?; of the theory of making predictions on the
internal structure of the gravitating systems after their
spherical collapse. However, this possibility has to be
confirmed on larger galaxy samples

L [kpc]

0.5

-0.5} T/

—I.Ol- e

~09 08 0.7

Figure 8 Top: 1- and 2-0 confidence levels in the & — L space
marginalized over M / % and f (see also Table 4). Spiral galaxy re-
sults from [105] are shown as empty triangle with error bars. Solid
(dashed) curve shows the tentative best-fit to the data including
(excluding) the spiral galaxies and assuming a L ox v/87(1+9).
Bottom: the anisotropy and the § parameters turn out to be corre-
lated for the elliptical sample (full squares). This correlation seems
toinclude also the spiral sample cumulatively shown as the empty
triangle (here we have assumed = —1.0+ 0.5 as a fiducial value
for spiral galaxies to draw a semi-quantitative trend aqrass galaxy

types) [108].



Mode [ing clusters qf ga laxies

A fundhmenta[ issue is related to clusters and su}oerc(usters qf ga[axies.

Such structures, essentially, rule the large scale structure, and are the
intermediate step between galaxies and cosmology.

As the galaxies, tﬁely appear DM dominated but the distribution of DM
component seems clustered and organized in a ver(v different way with respect
to galaxies. It seems that DM is ruled by the scale and also its }{md'amenta(
nature could depend on the scale

Our goa( is to reconstruct the mass yrqfi&e gf clusters without DM anpting the
same strategy as above where DM eﬁ"ects are ﬁgured' out Ey corrections to the
Newton yotential'




Modeling cluste

Standard Cluster Model: syﬁeﬁ’m( mass

- Boltzmann equation:

- Newton classical approach:

- f(R) approach:

.

(:)( 7.)

rs (f gafaxies
e

distribution in ﬁyd%smtic equi[iﬁm’um

d®  KT(r) |dlnpgas(r) dInT(r)
dr — pmpr dnr dinr
a GM
o(r) = —
< d
Pl.EC(T) = Pdark + Pgas(T) + Pgal(T) + pcDgai(T)
4
T dagr (1 T 3" )

pet.EC(T) = pgas(r) + pgat(7) + pcDgat ()

- Rearranging the Boltzmann equation:

: 3GM
(:)‘\' (r) - 4(1 1 7-
s GM e T
veir) == day r

r

\

40,1 ‘2d¢’c
~ 3G ar

da, [_ kT(r) ' (d In pgas(r)

I dInT(r)
3 pmyG dinr dlnr

Mpar.ovs(r) = Mgas(r) + Mgai(r) + Mcpgai(r)

(r)

Myartn(r) =

44



Mode [mg clusters ga laxies

Fitting mass Trqﬁ’[é with data:
- Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)
- ‘T’emyemture yrqﬁ’lé from spectroscopy

s v N\=o 2
- Gas density: modified beta-model ~ , , _ 2. (/) . ! Moo
G Y f plte = Ty (14 72/r2)38-a/2 " (1 4 7 [r])P T (1 + 12 /r2,)3%

Pgal,1 - [1 + (‘};—6)2] —% r < Rc PO.J
- Gale density:  poar(r) = 2.6 PCDgal =
Galaxy density g ga (%)2 (1 ; %)2

21— %"
)
2|1 — r> R
Pgal,2 [ A ( R. ] c
Table 1. Column 1: Cluster name. Column2: Richness. Column 2: cluster total mass. Column 3: gas mass.
Column 4: galaxy mass. Column 5: cD-galaxy mass. All mass values are estimated at r = rye.. Column 6:
ratio of total galaxy mass to gas mass. Column 7: minimum radius. Column 8: maximum radius.

name R My N Mgas M gai M.pgai g:i Tmin  Tmaz
(Mg) (Mg) (Mg) (Mg) (kpe)  (kpc)
A133 0 4.35874-10'%  2.73866-10'% 5.20269-10'2 1.10568-10'2 0.23 86 1060
A262 0 4.45081-1013 2.76659-1012 1.71305-10'! 5.16382-.1012 0.25 61 316
A383 2 2.79785-10'%  2.82467-10'% 588048 -10'%2  1.00217-10'2 0.25 52 751
A478 2  851832-10' 1.05583-1014 2.15567-10'% 1.67513-10!2 0.22 59 1580
A007 1 4.87657-10  6.38070- 10"  1.34129-10"  1.66533-10'2 024 563 1226
A1413 3 1.00598-101% 0.32466 - 1013  2.30728-10'3 1.67345-1012 0.26 57 1506
A1795 2 1.24313-10'%  1.00530-1013  4.23211-10'2 1.93957.10'2 0.11 79 1151
A1991 1 1.24313-10"  1.00530-10'®  1.24608 - 10'2  1.08241-10'2 0.23 55 618
A2029 2 8.92392-10'  1.24129.1014 3.21543-10'3  1.11921-1012 0.27 62 1771
A2390 1 2.09710-10'® 2.15726- 10"  4.91580-10'  1.12141-10'2 0.23 83 1984
MEKW4 - 4.69503-10'3  2.83207-10'2 1.71153-10'1 5.20855.1011 0.25 60 434
RXJ1159 -  8.97997-10'%  4.33256-10'2  7.34414-10'! 5.38799-10'' 0.29 64 568 45




Mode [ing clusters of ga laxies

s 7 s , , R 1 ‘ (_-'\[bar.obs - -'\[bar,theo)?'
- Minimization of chi-square: X' = Z,: e
- Markov Chain Monte Carlo:
’ / ’o X o accepted step
a(p,p’) =min< 1 L{d|p)P(p)q(p . P) * rejected step
L{d|p)P(p)q(p.p’)

&

new point out qf prior
’.Reject min < 1: ) ) )
new point with greater cﬁt-scluare

Accept min = 1: new point in prior and less cﬁz-square %

Sampﬁz qf acce/ptedl points "N Sam}a(ing from und'er[ying proﬁaﬁiﬁ’ty distribution
- Power spectrum test convergence:

[N

Discrete power spectrum from samylés | ,  Convergence = f[at spectrum
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Mode [ing clusters of ga laxies
e «

S)( 1013 T T T T T T T l x lOL?
T 5x 1013
1x 103}
—5x 102} ~1x 10%3
¥ 55 % 1012
- 12| =
lxl?u 1x 102
5x 10 " I' ] 5 % loll
l"
' p
l)"xloll 1 1 1 1 1 —'l 1 l)'-loll /l 1 1 1 1
100 150 200 300 S00 700 1000 50 100 200 500 1000
r (kpc) r (kpc)

- Differences between theoretical and observed fit less than 5%
- ’Iypica( scale in [100; 150] kpc range where is a turning-point:

* Break in the hydrostatic equilibrium
+ Limits in the expansion series of (R):  p _ g, - 2L inthe range[19;200] kpc
ao
Proper gravitationalscale (as for galaxies, see Capozziello et al MNRAS 2007)

+ Similar issues in Metric-Skew-Tensor-Gravity (Brownstein, 2006): we have better

and more detailed approach 47



Mode [ing clusters

Results

name

[a1 — 1o, ay + 1]

a2

(kpe?)

[az — 1a, a2 + 1a]

A133
A262
A383
A4TS8
A907
Al413
A1795
A1991
A2029
A2390
MKW4
RXJ1159

0.085
0.065
0.099
0.117
0.129
0.115
0.093
0.074
0.129
0.149
0.054
0.048

[0.078, 0.091]
[0.061, 0.071]
[0.093, 0.108]
[0.114, 0.122]
[0.125, 0.136)
[0.110, 0.119]
[0.084, 0.103)]
[0.072, 0.081]
[0.123, 0.134)
[0.146, 0.152)
[0.049, 0.060]
[0.047, 0.052]

—4.98 . 103
—10.63
—9.01 - 102
—4.61.10°
—8.77 - 108
—9.45 . 104
—1.54.10°%
—50.69
—2.10 - 104
—1.40 . 10°
—23.63
—18.33

(kpc?)
[-2.38 - 104, —1.38 - 103
[-57 65, —3. 17]

[—4.10 - 102, —3.14 - 10?)
[-1.01-10%, —2.51 - 10%]
[—1.54-10%, —2.83 . 107
[—4.26 - 10%, —3.46 - 109]
[—1.01-10%, —2.49.10%
[ 3.42- 102, —13]
~7.95-104, —8.44 . 10°
[ ;
[~5.71 - 10°, —4.46 - 10°]
[-1.15-102, —8.13]
[—1.35-10%, —4.18)

L [L — 1o, L + 10]
' (kpe)
591.78 [323.34, 1259.50]
31.40 [17.28, 71.10]

234.13  [142.10, 478.06]
484.83  [363.29, 707.73]
517.30  [368.84, 825.00]
2224.57  [1365.40, 4681.21]
315.44  [133.31, 769.17]
64.00 [32.63, 159.40]
988.85  [637.71, 1890.07]
7400.80  [4245.74, 15715.60]
51.31 [30.44, 110.68]
47.7: [22.86, 125.96]
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» Modeling clusters i galaxies ;
e —

Results: expectations
- First derivative, a, : very well constrained — 1t scales with the system size
3GM 1 _.
- Newtonian [imit: o(r)= — 1 (1 -+ §e"f) l—& |“1 >3/4 |
alr
1.0 g rvey vy Ty oy Yoy
o8l —
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» Modeling clusters

Cluster of Galaxies: a; = 0.16 - L = 1000 kpc

g)o,int. tliée’}ootentia[; Galaxies: a; = 0.4 - L = 100 kpc
Sclar System: a; = 0.75 - L = 1 kpc

Newton Limit: a; = 0.75 - L = 0 kpc

0
_20_
i Clusters
Galaxies
= 40 Solar system |
¥ i Newton )
g
2
g -60 J
_80 _
~100 N B g m @ w f B g w p a B
0.0 0.2 0.4 0.6 0.8 1.0
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name

A133
A262
A383
A4TS8
A907
Al413
A1795
A1991
A2029
A2390
MEKW4
RXJ1159

ai

0.085
0.065
0.099
0.117
0.129
0.115
0.093
0.074
0.129
0.149
0.054
0.048

[a1 — 17, ay + 10o]

[0.078, 0.091]
[0.061, 0.071]
[0.093, 0.108]
[0.114, 0.122]
[0.125, 0.136]
[0.110, 0.119]
[0.084, 0.103]
[0.072, 0.081]
[0.123, 0.134]
[0.146, 0.152]
[0.049, 0.060]
[0.047, 0.052]

—4.98 . 103
—10.63
—9.01 - 102
—4.61.10°
—5.77-10°%
—9.45 . 104
—1.54.108
—50.69
—2.10- 104
—1.40 - 10°
—23.63
—18.33

[ag — 1o, ag + 10’]

(kpc?)

[—2.38 - 104, —1.38 - 10%]
[-57.65, —3.17]

—4.10 - 102,

[=

[~1.01-10°%,
[—1.54 - 104,
|
[=

—4.26 - 105,
1.01-10%,

—-3.14 -

—2.51-
—2.83.
—3.46 -

—2.49 .

102
107
10%]

104]
107

[-3.42 - 102, —13]
[~7.95- 104, —8.44 . 10°]
[—5.71-10%, —4.46 - 10°)

[-1.15-102, —8.13)

[-1.35-10%, —4.18)

591.78
31.40
234.13
484.83
517.30
2224.57
315.44
64.00
988.85
7490.80
51.31
47.72

[L — 1o, L + 10]
(kpe)

[323.34, 1259.50]
[17.28, T1.10]
[142.10, 478.06]
[363.29, 707.73]
[368.84, 825.00]
[1365.40, 4681.21]
[133.31, 769.17]
[32.63, 159.40]
[637.71, 1890.07]
[4245.74, 15715.60]
[30.44, 110.68]
[22.86, 125.96]
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» Modeling clusters

- Gravitationallength: ; _ (a1, az) = (_ 6;_2 ) 1/2 Strong characterization of
1

Gravitationalpotential

< L >, = 318kpec < a2 »p= —3.40 - 10%
- Mean length: _ .
< L >y = 2738 kpe < ag >m= —4.15- 10
- Strongly related to virialmass ] }N '
(the same for gas mass): i } {mn {A '
- Strongly related to average g, Jas
temperature: stk oo
Fou }Ana
N P x:ssx

- 52



| gR Eased' modél} Vs f(ﬂ{) gmwty

| [ >~ How canwe discriminate?

Agreement twith Data... D

- No a priori dynmamical model = Model Independent Approach;

- Robertson - Walker metric;

- EXpansion series scale racror wi respvect 10 cosmic time.
Expansi 1 the scale fact ’tﬁjﬂtt ic ti

ai0) = 14 Hy(t— to)——HZ(t tg)? id0 H3(t to)>+ —H“(t to)* +l H (t—to)°+O[(t—to)"
a(to) 3| 5|
| 1d% 1 1d% 1 ld'a 1 ld°a 1
g L 5 ) = s(t) = ——— [l(t) = ———
= a dt? H? i) a dt* H? s(?) a dt* H? (%) @ gt H®
Deceleration  Jerk Snap Lerk

—
error on d(z) less than 10% up toz =1

Expansion up to fifth order : <

error on W(z) less than 3% uptoz =2 .
N



= W =rem iV =cwmm W-amm V-

- Derivatives qf H(b): | > H=—-H*1+q)

H=H*j+3q+2)

d*H/dt* = H*[s — 4j — 3q(q +4) — 6]
d*H/dt* = H*[l — 554+ 10(q + 2)j + 30(q + 2)q + 24]

l"\ p
- Derivatives qf scalar curvature: ,  Ro=—6HZ(1 - qo)
Ry = —6H;(jo — Go—2)

R = —6(H + 2H? :
( ) Ry = —GH(')4 (so + qg + 8qo + 6)

d’Ro/dt® = —6H, [lo — so + 2(qo + 4)jo — 6(3q0 + 8)qo —5424]



, _ HgQu |, f(Ry) = Rof'(Ro) — 6HoRyf"(Ry)

- 1t Friedmann eq.: Hj

- fU(Ry) 6f'(Ry)
- 2" Friedmann .. P 3HG ), e Ri?)f "(Ry) + (Ry — HyRo) f"(R)
v 2f(Ry) 21'(Ry)

- Derivative qf ond Friedmann eq. :

R?f"(R) + (ﬁ’ — HR) f"(R) + 3H2Qpa™2  R3f0)(R) + (3}'?;'? B H}'?z) F(R)
2[R ()] (R ) 2f'(R)
(¢°R/dt* — HR+ HR) f"(R) — 9H3QuHa™
2f'(R)
- Constraint from gravitational constant:

H =

5 870 . N . ‘
H = o P+ Penf (R i) Gl =0) = G — f'(R)) = 1.
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- Final solutions: f(Ro) Po(qo, jo, so, lo)2 + Qolqo. jo, So, lo)

6H? R(qo, jo- S0 o)
f'(Ro) =1
f"(Ro) _ P24, Jo, 50) ¢ + Q2(4o0. Jo, So)
(6H2)™ R(qo, Jo, So, lo)
f"(Ry) _ _7'73(%,]'0,5'0.» lo) Q2 + Q3(g0- Jo, So, lo)
(GHg)_‘Z (Jo — go — 2)R(qo, Jo: So. la)

- Taylor expansion f(R) in series of R up to third order (higher not necessary)
- Linear equations in f(R) and derivatives

Q,] = (.041

- Oy is model dependent:
()‘, = ().250. 56



“Precision cosmo[ogy | / . Values qf cosmogm}oﬁic parameters?

Cosmographic parameters . Dark energy parameters = equivalent f(R)
CPL approach:

(Chevallier, Polarski, Linder)

w=wy+w,(l —a)=wy+w,z(l+2)!

~

p ¢ 33 , 9
Cosmogrqpﬁtc So = _i) -~ T“ — Qum)w, — 3(1 — Q) [9 4+ (T — Qag)wa] wo +
) 9 5 2T _
parameters: < - I(1 — Qar)(16 — 3w — T'(l — ) (3 — Qg )wp
35 1—( 1- : :
b= b M 013 4 (7 Qe e 1459 4 0(82 — 2100w +

9
0 ) 3 97
+ (1 — Q) |67 =210 + 3('23 — 11 Jw, u(, + 1 —(1 = Q)47 = MQ\])UO +

+ —)-(l — O )(3 - QQ;\!)”'E:



3 , 9

1 . 27 .
o= 5= ‘_Q}\-ﬁ Jo=1 sp= - SQM; lo =1+ 3QM 7+ TQil

f(Ro) = Ry + 2A, f"(Ro) = f"(Ry) = 0,

NCDM fits well many data N cosmographic values strictly depend on Qy
4

64 6000 +8)

2o = T = . 2= N oy
frics t](’,)\ % (1+ sq.)’ oo J{)\ X (1+ &), [3(9Qs + 74)Qp — 556] 0% + 16 27
So = g(’)\ X (1 + gy), Iy = [(’)\ X (1+ &), & [(8193\.{ —110)Qs + 40] Qar + 16 £

T30 = [3(QQM + 74) s — 556] Q%I + 16 . ‘2439?‘"

< { mo=~0.15 x ¢ for Qa = 0.041

o >~ —0.12 X £ for Qpr = 0.250

oo = f"(Ro)/ f(Ro)x Hy

mo = f"(Ro)/f(Ro)x Hy { e fob i w0

mao =~ —0.18 x £ for £y =0.250 58



lL.‘a —

- Beware of d'ivergences in the f(R) derivatives

- Small deviations from GR
- Large deviations for Baryonic dominated universe
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c“‘ os

—

1. ‘Estimate ( q(o), 1 (o), s(0), [(0) ) oEservationa(@
2. Compute f(Ro), f (Ro), f “ (Ro), f ”(Ro)

3. Solve for f(ﬁ) parameters from derivatives

4. Constmintf(ﬂl) models

- Procedure: <

N—
- eg. Double Power-Law: f(R) = R(1 + aR" + BR™™)
\
. | ) ~ a—,’,,Z(l——Q)R
f(R()) — R()(] + CYRS + ﬁR() m) - “/ - - ¢,0
f(Ry) =1+ aln+ 1)RE — B(m — 1)R;"™ 3 B=—12(1— ORG,
1 fU(Ry) = an(n+ DRI + Bm(m — DR ™ . >||l—l>
f’”(R()) = an(n + 1)(n — I)R(’;—z  u a = bR, n'(;:';’)(:f;’;‘f’zmo]
§ — Bm(m + 1)(m — )Ry **™, B = G2 R [1=n+(ps/ by Ro)
— m(l=m)(n+m)
_/
/'
nln+ 11 —m)(1-do/Ro) _ 4 m=—[1—n+(¢d3/d,)R,]

GaR 1 +m+ (s /)R]
min+1)m—1)(1-do/Re) __ 1 e < 1[

daRol1—n+(ds3/d2)Rq ) ' n=3z

—

\/N(cbo b, cbz)]
ﬁb ¢ Ry(1 + cbo/Réb)




- Cosmogrcyaﬁw Joammeters from SMQa. g = —090% 065  jo=27%67,

What we have to expect from data S0 =365%529, I = 1427 % 320.

-
oL
- Fisher information matrix method: Fi; = <———>
d0;00 ;

-

o . 2
‘ NsNela l'obs(-z-i) = l'th.(-zn.s HOs P
X*(Ho,p) = 3,50 [‘ ‘ )

n=1 ag; (:l)

- FM ingredients : < di(2) =D Dt 22 P2 28 P2 3 4D .2°

- Z Y~ »
o(z) = \/0';“ - ( ) oy,
<max

i=4

2
i.,:

\.

g
G103y

g dg'
i%j ()[), d[)

0'['

- Estimating errorong:  o; = ‘
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- Survey: Davis (2007)
GN/QM =10%; o'sys = 0.15

Nsnea = 2000 ; O, = 0.33

2 =17 3
- Snayp like survey: '3
On/Qp = 1% ; Oyys = 015
Nynes, = 2000 ; G, = 0.02

2 =17 -

- Ideal PanSTARRS survey: "
Oay/Qay = 0.1% ; Ogys = 0.15

N;Mga = 60000, O,, = 0.02

e e

o, = 0.38
0,=54
o, =28.1
O, = 74.0
\_ 4
o, = 0.08
o, =1.0
0; = 4.8
o, =137
- 4
/
o, = 0.02
o, =0.2
o; =0.9
o,=27

/‘
0,, = 0.04

05, = 0.04
-
/‘
0,, = 0.007
L
0, = 0.008
-

/‘

03, = 0.0016
-




Conclusions (D'E)

Extended Gravity seems a viable approach to describe the Dark Side of the
Universe. 1t is based on a straightforward generalization of Einstein Gravity
and does not account for exotic fluids.

Following Starobinsky, R can be considered a “geometric” scalar field?).
Comfortable results are obtained by matching the theory with data (SNeta,
Radio-galaxies, Age of the Universe, CMBR).

Transient dust-like Friedman solutions evolving in  de Sitter- [ike expansion

(DE) at late times are particularly interesting (debated issue).

Generic quintessential and DE models can be easily “mimicked” by f(R)
tﬁrougﬁ an inverse scattering yroced'ure. Cosmogm}oﬁy.

A comprehensive cosmological model from early to late epochs should be
achieved by f(R). LSS issues have to be carefully addressed.



Conclusions (D'M)

= Rotation curves of galaxies can be naturally reproduced, without huge
amounts of DM, thanks to the corrections to the Newton potential, which
come out in the low energy limit.

= The baryonic Tully- Fisher relation has a natural explanation in the
framework of f(R) theories.

= Effective haloes of elliptical  galaxies are reproduced by the same

mechanism..

= Good evidences also for galaxy clusters

Furthermore.....

= Orbital period for PSR 1913 + 16 and other binary systems in agreement
with f(R)-gravity (probe for massive GWs?).

= Exotic stellar structures could be compatible with f(R).

= Search for EXPERIMENTUM CRUCIS



> Wlatcﬁing other DE models

> Jordan Frame and Einstein Frame
> Systematic studies of rotation curves for other gafaxies
> ga(axy cluster cfynamias (virial theorem, SZE, etc.)

» Luminosity Jmﬁfes of alaxies in f(CR)
> Faber-Jackson & T uﬂgz-f?isﬁer, Bullet Cluster

U

e

> Systematic studies qf PPN formaﬁ’sm
> Relativistic fxyerimenm[ Tests in f(CR)
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