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The content of the universe is, up today, absolutely unknown for 
its largest part. The situation is very “DARK” while the 
observations are extremely good!

Dark Matter 25%

Dark Energy 70%

Neutrinos 0.3% 

Stars 0.5%

Free Hydrogeno and
Helio 4%

Heavy elements 0.03%

Components of the Universe
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The Observed Universe Evolution

4



Big	  Rip

Big	  Crunch?

Eternal
Expansion	  ?

Future fates of the dark energy universe
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A plethora of theoretical models!!

DARK ENERGY

Neutrinos

WIMPs

Wimpzillas, Axions, the “particle 
forest”.....

MOND

MACHOS

DARK MATTER

Black Holes

.....

Cosmological constant

Scalar field Quintessence

Phantom fields

String-Dilaton scalar field

Braneworlds

Unified theories

.....
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“…there are the ones that invent OCCULT FLUIDS 
to understand the Laws of Nature. They will come to 
conclusions, but they now run out into DREAMS 
and CHIMERAS neglecting the true constitution of 
things…..
…however there are those that from the simplest
observation of Nature, they reproduce New Forces
(i.e. New Theories)… ”

From the Preface of  PRINCIPIA  (II Edition)           
1687 by Isaac Newton, written by

Mr. Roger Cotes
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There is a fundamental issue:
Are extragalactic observations and cosmology probing 
the breakdown of General Relativity at large (IR) 
scales?
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Dark Energy and Dark Matter
as “shortcomings” of GR.
Results of flawed physics?

The “correct” theory of gravity could
be derived by matching the largest
number of observations at

ALL SCALES!

We are able to observe only
baryons, radiation, neutrinos

and gravity

Accelerating behaviour (DE) and dynamical phenomena (DM) 
as CURVATURE EFFECTS

The problem could be reversed



A. A. Starobinsky, Phys.  Lett. B91, 99 (1980).
S. Capozziello, Int. Jou. Mod. Phys. D 11, 483 (2002) .
A. De Felice, S Tsujikawa, Living Rev.Rel. 13 (2010) 3 
S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011).
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

In order to extend General Relativity, we consider two main features:

§ the geometry can couple non-minimally to matter and some scalar field;

§ higher than second order derivatives of the metric may appear into
dynamics

In the first case, we say that we are dealing with scalar-tensor gravity, and in the
second case with higher-order theories

Extending General Relativity
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Extending General Relativity

A general class of higher-order-scalar-tensor theories in four dimensions is given 
by the action

In the metric approach, the field
equations are obtained by
varying with respect to gμν

§ Gμν is the Einstein tensor
and
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Extending General Relativity

§ The simplest extension of GR is achieved assuming F = f (R),  ε =  0,  in the 
action

§ The standard Hilbert–Einstein action is recovered for f (R) = R
By varying with respect to gμν , we get

where the gravitational contribution due to higher-order terms can be
reinterpreted as a “curvature” stress-energy tensor related to the form of f(R).

Such a tensor disappears for f(R )=R

and, after some manipulations
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Extending General Relativity

Considering also the standard perfect-fluid matter contribution, we have

The peculiar behavior of f(R) = R  is due to the particular form of the 
Lagrangian itself which, even though it is a second-order Lagrangian, can be 
non-covariantly rewritten as the sum of a first-order Lagrangian plus a pure 
divergence term.

is an effective stress-
energy tensor constructed
by the extra curvature
terms

In the case of GR,   identically vanishes while the 
standard, minimal coupling is recovered for the 
matter contribution
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Extending General Relativity

From the general action it is possible to obtain another interesting
case by choosing

The variation with respect to gμν gives the second-order field equations

The energy-momentum tensor related to the scalar field is

The variation with respect to φ provides the Klein–Gordon equation, i.e. the field equation
for the scalar field:

This last equation is equivalent to the Bianchi contracted identity
14



The weak field limit in f(R)-gravity

We can deal with the Newtonian and the post-Newtonian limit of f (R) gravity 
adopting the spherical symmetry
The solution of field equations can be obtained considering the general spherically 
symmetric metric:

In order to develop the Newtonian limit, let us consider the perturbed metric 
with respect to a Minkowskian backgroun gμν = ημν+hμν

The metric entries can be developed as:
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The weak field limit in f(R)-gravity

We assume, analytic Taylor expandable f (R) functions with respect to a certain value R 
=R0:

In order to obtain the weak field approximation, one has to insert expansions into field 
equations and expand the system up to the orders O(0), O(2) e O(4).
If we consider the O(2) - order 
approximation,
the field equations in vacuum, 
results to be

It is evident that the trace 
equation provides a differential 
equation with respect to the 
Ricci scalar which allows to 
solve exactly the system at O(2) 
- order
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The weak field limit in f(R)-gravity

Finally, one gets the general solution:

For  limit f (R) → R, in the case of a
point-like source of mass M, we recover the 
standard Schwarzschild solution

The two arbitrary functions of time δ1(t) and δ2(t ) have respectively the dimensions of 
length−1 and length−2 .

where

They are completely arbitrary since the differential equation system contains only spatial 
derivatives and can be fixed to constant values.
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The weak field limit in f(R)-gravity

In order to match at infinity the
Minkowskian prescription for the metric,
one can discard the Yukawa growing
mode in and then we have:

In particular, since gtt = 1+2Φgrav = 1+ g(2)tt , the gravitational potential of
f (R)-gravity, analytic in the Ricci scalar R, is

This general result means that the standard Newton potential is achieved only in the 
particular case f (R) = R while it is not so for any analytic f (R) models
The parameters f1,2 and the function δ1 represent the deviations with respect the
standard Newton potential

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012) 18



The weak field limit in f(R)-gravity

We note that the ξ
parameter can be related to 
an effective mass being

and can be interpreted also 
as an effective length L

The second term is a modification of the gravity including a scale length

If δ = 0 the Newtonian potential and the standard gravitational coupling are recovered.

Assuming  1+δ = f1, δ is related to δ1(t ) through

Under this assumption, the scale length L could naturally arise and reproduce 
several phenomena that range from Solar System to cosmological scales.
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Understanding at which scales the modifications to General
Relativity are working or what is the weight of corrections to
gravitational potential is a crucial point that could confirm or
rule out these extended approaches to gravitational interaction.
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Stellar structures and Jeans instability

It is usually assumed that the dynamics of stellar objects is completely determined by the 
Newton law of gravity

Considering potential corrections in strong field regimes could be another way to check the 
viability of Extended Theories of Gravity

In particular, stellar systems are an ideal laboratory to look for signatures of possible 
modifications of standard law of gravity

Some observed stellar systems are incompatible with the standard models of stellar 
structure : these are peculiar objects, as star in instability strips, protostars or
anomalous neutron stars (the so-called “magnetars” with masses larger than their expected 
Volkoff mass) that could admit dynamics in agreement with modified gravity and not 
consistent with standard General Relativity (e.g. PSRJ 1614-2230).
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Field equations  at O (2)-order, that is at the 
Newtonian level, are

The energy-momentum tensor for a perfect fluid is

modified Poisson equation

The pressure contribution is negligible in the field equations of Newtonian 
approximation

For f’’(R) = 0 we have the standard Poisson equation

From the Bianchi identity we have

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)

fn(R)=fn(R(2)+O(4))=fn(0)+fn+1(0)R(2)+…

Stellar structures and Jeans instability
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Stellar structures and Jeans instability
Let us suppose that matter satisfies a polytropic equation p = K γργ

we obtain an integro-differential equation for the gravitational potential , that is

Lané-Emden equation in f(R)-gravity

S. Capozziello, M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011)

We find the radial profiles of the 
gravitational potential by solving for 
some values of n (polytropic index)

New solutions are  physically relevant 
and could explain exotic systems out of 
Main Sequence (magnetars, variable  
stars).
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Stellar structures and Jeans instability
We have also compared the behavior with the temperature of the Jeans mass for 
various types of interstellar molecular clouds

S. Capozziello, M. De Laurentis I. De Martino, M. Formisano, S.D. Odintsov 
Phys.Rev. D85 (2012) 044022

In our model the limit (in unit of mass) to start 
the collapse of an interstellar cloud is lower than 
the classical one advantaging the structure 
formation.
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Addressing stellar systems by this approach could be extremely 
important to test observationally Extended Theories of Gravity. 
See e.g. Astashenok, Capozziello, Odintsov JCAP 1312 (2013) 040 where 
anomalous neutron stars are described by f(R)-gravity.
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We calculate the Minkowskian limit for  a class of analytic f(R)-Lagrangian

Field equations  at the first order of approximation in term of the 
perturbation , become:

The explicit expressions of the Ricci 
tensor and scalar, at the first order in the 
metric perturbation, read

Quadrupolar gravitational radiation in f(R)-gravity 

M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011) 
S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)
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Quadrupolar gravitational radiation in f(R)-gravity 

If we assume that the source is localized in a finite region as a consequence 
outside this region Tμν = 0, and then we have that

With this assumption we can calculate the energy momentum tensor of 
gravitational field in f(R)-gravity adopting the definition given in Landau and 
Lifshitz (1962) 

The energy momentum tensor  consists of a sum of GR contribution plus a 
term coming from f (R)-gravity : 

M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011) 27



Quadrupolar gravitational radiation in f(R)-gravity 

…in term of the perturbation h is

In the weak field limit,  the source hμν is written as function of time  t’ = t − r, and  
plane wave  approximation 

M. De Laurentis, S. Capozziello, Astroparticle Physics 35 , 257 (2011) 

the energy momentum 
tensor assumes the form:

De Laurentis M., De Martino I., 2013, MNRAS., doi:10.1093/mnras/stt216 28



Quadrupolar gravitational radiation in f(R)-gravity 

In order to calculate the radiated energy of a gravitational waves sources, we 
consider the average energy flux dE/dt away from the systems and the momenta of 
the mass-energy distribution

Finally the result is
for f’’0 = 0 and 
f’0 = 4/ 3

This means that this further term affects both 
the total energy release and the waveform. 

The massive mode 
contribution is evident. 

This could represent a further signature to investigate
such theories in the GW strong-field regime. 29



Application to the binary systems

Assuming  Keplerian motion and the orbit in the (x; y)-plane
the quadrupole matrix is

The  time derivative 
of the orbital
period

the time average of the radiated power

where

we will go on to constrain the f (R) theories estimating f’’0 from the comparison between the 
theoretical predictions of dTb and the observed one. 30



Using the values for the specific 
example of PSR 1913 + 16 to 
numerically evaluate the above 
equations

Orbital decay rate for  PSR 
1913 + 16 in f(R)-gravity. 
Upper limit set by Taylor et 
al. in dashed line. GR limit 
3.36× 10-12 in dotted line 
and the lower limit set by 
Taylor et al. in dashdot line. 
Solid line is dT f (R)

A class of f(R) agrees with data!

Application to the binary systems: The PSR 1913 + 16 case
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Extended Theories of Gravity can also impact on the estimate of 
DM properties on galactic scales

Modified gravity could be a possible way to solve the cusp/core 
and similar problems of the DM scenario without asking for huge 
amounts of DM
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Testing spiral galaxies

Yukawa-like corrections are a general feature, in the framework of f (R)-gravity

is the starting point for the 
computation of the rotation 
curve of an extended system.

This equation

Considering a general expression derived for a generic potential giving rise 
to a separable force

with μ=M/M¤, η =r /rs and (M¤, rs) the Solar mass and a characteristic length 
of the problem

In our case, fμ = 1 and:

with ηL =L/rs 33



Testing spiral galaxies

Using cylindrical coordinates (R,θ, z) and the corresponding dimensionless 
variables (η,θ,ζ) (with ζ = z/rs ), the total force then reads:

with ˜ρ = ρ/ρ0, ρ0 a reference density, we have 

For obtaining axisymmetric systems, one can set ρ˜ =ρ˜(η,ζ).

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)
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Testing spiral galaxies

The systems we are considering here are spiral galaxies which will be modeled as 
the sum of an infinitesimally thin disc and a spherical halo, and then
the scaling radius rs will be the disc scale length Rd

Under these assumptions, 
the rotation curve may be 
obtained as:

with

It is evident that the total rotation curve may be split in the sum of the 
standard Newtonian term and a corrective one disappearing for L →∞, i.e. 
when ETGs have no deviations from GR at galactic scales.

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)
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Testing spiral galaxies

The total rotation curve is:

Md is the disc mass,  d and h denote disc and halo related quantities, while N and Y
refer to the Newtonian and Yukawa-like contributions

One may model a spiral galaxy as the sum of a hick disc and a spherical halo 
without DM contribution.
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Testing spiral galaxies
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The modified potential can be tested also for elliptical galaxies checking whether it 
is able to provide a reasonable match to their kinematics.

Testing elliptical galaxies

Such self-gravitating systems are very different with respect to spirals so 
addressing both classes of objects under the same standard could be a 
fundamental step versus DM

One may construct equilibrium models based on the solution of the radial Jeans 
equation to interpret the kinematics of planetary nebulae  

We use the inner long slit data and the extended planetary nebulae kinematics for 
three galaxies which have published dynamical analyses within DM halo 
framework  (see Napolitano, Capozziello, Capaccioli, Romanowski ApJ 748 (2012) 87).

They are:
NGC 3379 , (DL +09) , NGC 4494 N +09 , NGC 4374 (N + 11).
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Testing elliptical galaxies

It is shown the circular velocity of the modified potential 
as a function of the potential parameters L and δ for 
NGC 4494 and NGC 4374.

From a theoretical point of view, δ is a free parameter 
that can assume positive and negative values. 
Comparing results for spirals and ellipticals, it is clear 
that the morphology of these two classes of systems 
strictly depends on the sign and the value of δ.
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The problem of fitting a modified potential (which is formally selfconsistent
implies the same kind of degeneracies between the anisotropy parameter,
β = 1−σ2

θ/σ2r (where σθ and σr are the azimuthal and radial dispersion components in 
spherical coordinates), and the non-Newtonian part of the potential (characterized by two 
parameters like typical dark haloes) in a similar way of the classical mass-anisotropy 
degeneracy

Under spherical assumption, nonrotation and β = const (corresponding to the family of 
distribution functions f (E,L) = f0L−2β, the 2-nd and 4-th moment radial equations can 
be compactly written as:

Testing elliptical galaxies

These degeneracies can be alleviated via higher-order Jeans equations including in the 
dynamical models both the dispersion (σp) and the kurtosis (κ) profiles of the tracers

where s(r ) = {ρσ2
r;ρv4

r }, β is the 
anisotropy parameter,
and

respectively for the 
dispersion and kurtosis 
equations 40



Testing elliptical galaxies

The overall match of the model curves with data is remarkably good and it is comparable 
with models obtained with DM modeling (gray lines)
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Testing elliptical galaxies
The marginalized confidence contours of the main two 
potential parameters for the three galaxies
there seems to be a possible increasing
trend of δ with the orbital anisotropy

such a function could be related to second order effects 
connected to anisotropies and non-homogeneities which 
could trigger the formation and the evolution of stellar 
systems
This results can have interesting implications on the 
capability of the theory of making predictions on the 
internal structure of the gravitating systems after their 
spherical collapse. However, this possibility has to be 
confirmed on larger galaxy samples
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Modeling clusters of galaxies

A fundamental issue is related to clusters and superclusters of galaxies. 

Such structures, essentially, rule the large scale structure, and are the 
intermediate step between galaxies and cosmology. 

As the galaxies, they appear DM dominated but the distribution of DM 
component seems clustered and organized in a very different way with respect 
to galaxies. It seems that DM is ruled by the scale and also its fundamental 
nature could depend on the scale

Our goal is to reconstruct the mass profile of clusters without DM adopting the 
same strategy as above where DM effects are figured out by corrections to the 
Newton potential
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Modeling clusters of galaxies
Standard Cluster Model: spherical mass distribution in hydrostatic equilibrium

- Newton classical approach:

- f(R) approach:

- Boltzmann equation:

- Rearranging the Boltzmann equation:
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Modeling clusters of galaxies

- Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)
- Temperature profile from spectroscopy
- Gas density: modified beta-model

- Galaxy density:

Fitting mass Profile with data:
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Modeling clusters of galaxies

- Minimization of chi-square:

- Markov Chain Monte Carlo:

Reject min < 1:
new point out of prior
new point with greater chi-square

Accept min = 1: new point in prior and less chi-square

- Power spectrum test convergence:

Sample of accepted points Sampling from underlying probability distribution

Discrete power spectrum from samples Convergence = flat spectrum
46



Modeling clusters of galaxies

- Differences between theoretical and observed fit less than 5%
- Typical scale in [100; 150] kpc range where is a turning-point:

• Break in the  hydrostatic equilibrium
• Limits in the expansion series of f(R):                              in the range [19;200] kpc

Proper gravitational scale (as for galaxies, see Capozziello et al MNRAS 2007)

• Similar issues in Metric-Skew-Tensor-Gravity (Brownstein, 2006): we have better 
and more detailed approach 47



Modeling clusters of galaxies

Results

48



Modeling clusters of galaxies
Results: expectations

Clusters

Galaxies

Solar System

Newtonian limit

- Newtonian limit:

- First derivative, a1 : very well constrained                        It scales with the system size

a1 à3/4
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Modeling clusters of galaxies

Point like potential:

Clusters
Galaxies

Clusters
Galaxies

Solar system
Newton
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Modeling clusters of galaxies
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Modeling clusters of galaxies

- Gravitational length: Strong characterization of
Gravitational potential

- Strongly related   to virial mass   
(the same for gas mass):

- Mean length:

- Strongly related  to average 
temperature:
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Cosmography

- No a priori dynamical model = Model Independent Approach;
- Robertson – Walker metric;
- Expansion series of the scale factor with respect to cosmic time:

Deceleration Jerk Snap Lerk

Expansion up to fifth order : error on dL(z)  less than 10% up to z = 1

error on  μ(z)  less than 3% up to z = 2

GR based models  vs f(R) gravity

Agreement with Data… 
How  can we  discriminate?
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Cosmography with f( R)- gravity

- Definition:

- Derivatives of H(t):

- Derivatives of scalar curvature:
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Cosmography with f( R)-gravity

- Derivative of 2nd  Friedmann eq. :

- Constraint from gravitational constant:

- 1st Friedmann eq. :

- 2nd Friedmann eq. :

55



Cosmography with f( R)-gravity

- ΩΩM is model dependent:

- Linear equations in f(R) and derivatives

- Final solutions:

- Taylor expansion f(R) in series of R up to third order (higher not necessary)
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f(R) derivatives and CPL models

CPL approach:
(Chevallier, Polarski, Linder)

Cosmographic
parameters:

Cosmographic parameters Dark energy parameters = equivalent f(R)

“Precision cosmology” Values of cosmographic parameters? 
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CPL Cosmography and f(R): the ΛCDM Model
ΛCDM model:

ΛCDM fits well many data cosmographic values strictly depend on ΩΩM
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CPL Cosmography and f(R): constant EoS case

- Constant EoS:
- Beware of divergences in the f(R) derivatives

- Small deviations from  GR 
- Large deviations for baryonic dominated universe
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Constraining f(R) models by Cosmography

- e.g. Double Power-Law:

1. Estimate ( q(0), j(0), s(0), l(0) ) observationally
2. Compute f(R0), f ’(R0), f “ (R0), f ’”(R0)
3. Solve for f(R) parameters from derivatives
4. Constraint f(R) models

- Procedure:

60



Constraining f(R) models by Cosmography
- Cosmographic parameters from SNeIa:

- Estimating error on g:

- Fisher information matrix  method:

- FM ingredients :

What  we have to expect from data
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σ1 = 0.38 
σ2 = 5.4 
σ3 = 28.1
σ4 = 74.0

σ20 = 0.04

σ30 = 0.04

- Snap like survey:

σM/ΩΩM = 1% ; σsys = 0.15
NSNeIa = 2000 ; σm = 0.02
zmax = 1.7

σ1 = 0.08 
σ2 = 1.0 
σ3 = 4.8
σ4 = 13.7

σ20 = 0.007

σ30 = 0.008

- Ideal PanSTARRS survey:

σM/ΩΩM = 0.1% ; σsys = 0.15
NSNeIa = 60000 ; σm = 0.02
zmax = 1.7

σ1 = 0.02 
σ2 = 0.2 
σ3 = 0.9
σ4 = 2.7

σ20 = 0.0015

σ30 = 0.0016

- Survey: Davis (2007)
σM/ΩΩM = 10% ; σsys = 0.15
NSNeIa = 2000 ; σm = 0.33
zmax = 1.7
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Conclusions (DE)
• Extended  Gravity seems a viable approach to describe the Dark Side of the 

Universe. It is based on a straightforward generalization of Einstein Gravity
and does not account for exotic fluids.

• Following Starobinsky, R can be  considered a “geometric” scalar field!).
§ Comfortable results are obtained by  matching the theory with data (SNeIa, 

Radio-galaxies, Age of the Universe, CMBR).
§ Transient dust-like Friedman solutions evolving in   de Sitter- like expansion
(DE) at late times are particularly interesting (debated issue).

§ Generic quintessential and DE  models can be easily “mimicked” by f(R)
through an inverse scattering procedure. Cosmography. 

§ A comprehensive cosmological model from early to late epochs should be  
achieved by f(R). LSS issues have to be carefully addressed.
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Conclusions (DM)
§ Rotation curves of galaxies can be naturally reproduced, without huge

amounts of DM, thanks to the corrections to the Newton potential, which
come out in the low energy limit.

§ The baryonic Tully- Fisher relation has a natural explanation in the
framework of f(R) theories.

§ Effective haloes of elliptical galaxies are reproduced by the same
mechanism..

§ Good evidences also for galaxy clusters
Furthermore…..
§ Orbital period for PSR 1913 + 16 and other binary systems in agreement

with f(R)-gravity (probe for massive GWs?).
§ Exotic stellar structures could be compatible with f(R)..
§ Search for EXPERIMENTUM CRUCIS
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DE & DM as curvature effects

Ø Matching other DE models
ØJordan Frame and Einstein Frame 
Ø Systematic studies of rotation curves for other galaxies
Ø Galaxy cluster dynamics (virial theorem, SZE, etc.) 
ØLuminosity profiles of galaxies in f(R). 
ØFaber-Jackson & Tully-Fisher, Bullet Cluster

Ø Systematic studies of PPN formalism
Ø Relativistic Experimental Tests in f(R)
Ø Gravitational waves and lensing
Ø Birkhoff ‘s Theorem in f (R)-gravity
Ø f(R) with torsion

Weak Fields, GW,
Further results

Perspectives:

WORK in PROGRESS! (suggestions are welcome!)
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