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Foundation: gravity and space-time 

Einstein works hard at finding a new theory
of Gravitation based on the following requirements:

§ principle of equivalence

§ principle of relativity

Gravity and Inertia 
are indistinguishable; 
there exist observers 
in free fall (inertial 
motion)
SR holds pointwise; the 
structure of the 
spacetime is pointwise
Minkowskian

“democracy” in Physics

all physical phenomena propagate 
respecting the light cones

§ principle of general covariance

§ principle of causality

§ Riemann’s teachings about the link 
between matter and curvature
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Foundation: gravity and space-time 

light cones structure 
generated by the metric g

Mathematical consequences:

§ principle of equivalence

§ principle of relativity

Inertial motion = geodesic 
motion

the spacetime M is endowed 
with a Lorentzian metric g

tensoriality

the gravitational field is 
described by g à 10 equations
Riem(g) has 20 (independent) 
components: too many!
Ric(g) has 10 (independent) 
components: OK!

§ principle of general covariance

§ principle of causality

§ Riemann’s teachings about the link 
between matter and curvature
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Foundation: gravity and space-time 

Einstein releases GR, finally written in a 
fully coherent form, both on a physical 
(conservation of matter) and  on a 
mathematical ground (Lagrangian formulation).

Gravity is identified by the (dynamical) metric 
structure g of a curved space-time M.

The simplest variational principle is assumed to be:
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Foundation: gravity and space-time 

They have a structure that suitably reduces to
Newtonian equations in the “weak field limit.”

A linear concomitant of the Riemann tensor, nowadays
called the Einstein tensor, equals the stress-energy
tensor that reflects the properties of matter.

The distribution of matter influences
Gravity through 10 second order
equations, nowadays called Einstein
equations:
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So, is g the gravitational field?

Einstein knows that it is not, since g is a tensor,
while the principle of equivalence holds true! Free
fall is described by the geodesics of (M, g):

This is the right object to represent the gravitational 
field: g is just the potential of the gravitational 
field... but being               

constructed since g, the metric remains the fundamental
variable: g gives rise to the gravitational field, to
causality, to the principle of equivalence, to rods &
clocks.
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Working on the theory of “parallelism” in 
manifolds, Tullio Levi-Civita understands that 
it is not a metric property of space, but rather 
a property of “affine” type, having to do with 
“congruences of privileged lines.”

Foundation: gravity and space-time 

Levi-Civita introduces the notion of linear 
connection as the more general object 

Generalizing the case of Christoffel symbols       ,

such that the equation of geodesics

is generally covariant.

A connection in a 4D space has 64 components. Only 40 if it is 
symmetric.

Any linear connection defines a (different) covariant 
derivative.
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Specific and particular is the case of metric
connections, i.e. linear symmetric
connections that are directly generated by a
metric structure in space (as in Riemannian
manifolds).

Foundation: gravity and space-time 

When a connection � is “metric,” its components are specific
functions of a metric g and its first derivatives (so called
Christoffel symbols).

In this case we say that � is the Levi-Civita connection of g 
and we write  �=�LC(g).

9



If  has no torsion (i.e. it is symmetric) this is a 
characteristic property of �L-C(g):

Its 40 components are function of 10 fields.

Foundation: gravity and space-time 

If � is the Levi-Civita connection of
g, then the covariant derivative of g
vanishes:
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Foundation: gravity and space-time 

The metric g (Gravitation) and the scalar factor ��(the “phase”) 
determine in fact a linear connection in spacetime.

He introduces a scalar factor ��(a “gauge”) 
that point by point calibrates the 
interaction. 

Weyl ’ s idea fails. The Lagrangian is not appropriate and field
equations describe a “massive photon” (it is in fact a

Proca-Yukawa interaction in modern language).

Weyl’s idea generates however a keypoint: connections may have
an interesting dynamics. Fields may be gauge fields - i.e. 
fields with group properties coming from further

principles and “internal symmetries”.

Hermann Weyl makes a celebrated attempt to
unify Gravity with Electromagnetism. He
understands that Electromagnetism is a
gauge field.
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Foundation: gravity and space-time 

Paul Henri Cartan works on the theory of
“parallelism” due to Levi-Civita and
understands that the group of linear
transformations might be changed to other
groups

De facto he introduces a transport of “frames” that 
undergo gauge transformations.

He has in mind properties of matter (and in fact this
has to do both with microstructures in continua and with
the symmetries of elementary particles and fields).
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Einstein is not so happy with the fact that 
the gravitational field is not the 
fundamental object, but just a by-product of 
the metric. Using a method invented few years 
before by Attilio Palatini, he realizes that 
one can obtain field equations by working on 
a theory that depends on two variables, 
varied independently:

Foundation: gravity and space-time 

There are 10 + 40 independent variables and the equations are:

a metric g and a linear connection Γ assumed to be symmetric.
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Field equations for the 40 components of �
ensure that �is the Levi-Civita connection 
of g (Levi-Civita theorem):

Foundation: gravity and space-time 

Field equations for the remaining 10 variables transform directly
into Einstein equations.

In Palatini formalism, the metric g determines rods & 
clocks, while the connection � the free fall.
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Foundation: gravity and space-time 

Einstein gets convinced that Weyl’s idea to use a linear 
connection in order to construct a unified theory (of 
Gravity and Electromagnetism) was good.

He introduces purely affine theories (PAT), investigated
by him and others (Eddington and Schrödinger) until the 
Fifties, and then abandoned (because of 
substantialfailure) after the birth of gauge theories.

In a PAT the only independent variable is a linear connection �.

A metric is introduced only by a Legendre transformation, as a momentum
canonically conjugated to the connection:

Eddington finds a PAT that is fully equivalent to GR (BUT THIS IS THE 
ONLY ONE!):

15



Is still g the fundamental object of 
Gravity?

Einstein tries to consider directly the
connection as the fundamental object of Gravity,
but he never completes the process of
“dethronizing” g (he died before!).

Shortcomings in General Relativity
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But after all, what is the problem with GR?

Shortcomings in General Relativity

GR is simple, beautiful... and (seems to be) wrong:

§ cosmological constant Λ
§ inflation
§ anomalous acceleration
§ the quantum gravity problem
§ consistency of EP at classical and quantum level

Today observations say that there is way too few matter 
in the Universe!  Thence the need, in order to save GR, 
for dark energy and dark matter:
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Is there any way out to these 
shortcomings?
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Alternatives, way out and extensions

Non-linear Theories of Gravitation (NLTG) are field theories in which
the (gravitational part of the) Lagrangian is an arbitrary function
of a metric together with its first and second order derivatives.

Covariance then imposes that the Lagrangian should be a scalar function
of g and of the Riemann tensor of g. 

Of course particular cases are those in which the Lagrangian depends only
on the Ricci tensor or on the scalar curvature of the metric (see later).

NLTG complicate the mathematics of the problem

These genuine second order Lagrangians do in fact produce field equations
that are  fourth order in the metric, something that cannot be accepted if
one believes that physical laws should be governed by second order
equations. 

A NLTG gives second order field equations if and only if the 
Lagrangian is degenerated; e.g. if one chooses a “topological
Lagrangian”…
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Alternatives, way out and extensions

A particular family of NLTG is f(R)-gravity in metric formalism, in
which the Hilbert Lagrangian is replaced by any non-linear density
depending on R. GR is retrieved in (and only in) the particular case f
(R)=R.

In these theories there is a second order part that resembles Einstein
tensor (and reduces to it if and only if f(R) = R) and a fourth order
“curvature part” (that reduces to zero if and only if f (R) = R):

Higher order Gravity (4th)!

Pushing the 4th order part to the r.h.s. lets interpret it as an “extra 
gravitational stress”  ,  much in the spirit of Riemann.

In any case the fourth order character of these equations makes them very 
unsuitable under several aspects, so that they are eventually abandoned.
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f ’( R ) = 1
Second Order 

Field 
Equations

degenerate

theory

Gravitational contribution Matter contribution

f ’’( R ) = 0

Alternatives, way out and extensions

From  f(R) theories GR is retrieved in (and only in) the 
particular case f(R)=R.
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Alternatives, way out and extensions

Discovery that for non-linear theories of Gravitation written under the 
Palatini form holds a universality property. 

Taking the trace of the first equation

one gets (in 4D) the so-called master equation:

If the trace ��of the stress tensor T vanishes (e.g. if there is no matter
at all….) then the master equation forces the scalar curvature R to take
specific values that depend on the analiticity properties of f.

The only degenerate cases are the linear case f(R) = R and the 
quadratic case f (R) = R2.
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In the linear case the conformal factor is a 
constant, in geometrical units equal to 1.

In the quadratic case the master equation is empty
and field equations are in fact conformally
invariant.

The fundamental field is the linear connection �, 
that has a dynamics since it enters the Lagrangian
together with its first derivatives.

The metric g is no longer a Lagrange multiplier, but
still has no dynamics since it enters algebraically
the Lagrangian.

Alternatives, way out and extensions
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A conformal transformation is a transformation of a 
metric structure that does not change the angles but 
changes the scale. 

The key role of conformal transformations

In Riemannian Geometry it is a relation between two 
metrics that requires them to be proportional to each 
other by a conformal factor, assumed to be positive 
for obvious signature reasons.

In linear Euclidean Geometry this is just a dilatation. 
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The key role of conformal transformations

The principle of causality determines a conformal structure
in the spacetime, i.e. it selects not a metric but a whole
family of conformally related metrics.

In fact the distributions of light cones of two conformally
related (Lorentzian) metrics are necessarily the same, so that
photons of the two metrics are the same (a photon is a particle
that travels in such a way that its velocity lies in the light
cone at each point of the trajectory of the particle).

Null geodesics are left unchanged by conformal transformations
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The key role of conformal transformations

What happens to the Hilbert action if the metric undergoes a conformal
transformation? 

Or, in other words, is GR conformally invariant?

The answer is: NO!. If g is replaced by a conformally related metric, the 
action is multiplied by a factor and an additional term appears.

Taking away a divergence (that does not affect field equations) it reduces
to a conformal Hilbert action plus a second order action in the conformal
factor �. 

In a sense the dynamics of g is driven by this factor, that obeys fourth
order equations. The theory is not conformally invariant, since the 
leading equation that would impose conformal invariance has only
particular solutions (e.g. �= 0).
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Was Einstein right in assuming the metric 
g of the space-time as the fundamental 
object to describe Gravity?

Let’s return to our Questions:

Metric or connections?
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When Einstein formulated GR, the only geometrical field he could use 
was a (Lorentzian) metric g, the structure that Gauss (1830) and 
Riemann (1856) introduced in surfaces and higher-dimensional manifolds
to define curvature.
At that time he had no other choice.

In GR               are not equations. They express a founding issue. 

Assumption on space-time structure: there is a connection � ; this
connection has no dynamics; it is in fact a priori the Levi-Civita 
connection of the metric g. Only g has dynamics. So the single object g
determines at the same time the causal structure (light cones), the 
measurements (rods and clocks) and the free fall of test particles 
(geodesics). Spacetime is a couple (M,g).

Even if it was clear to Einstein that Gravity induces “freely falling 
observers” and that the principle of equivalence selects an object 
that cannot be a tensor - since it is capable of being “switched off” 
and set to zero at least in a point - he was obliged to choose it as 
being determined by the metric structure itself.

Metric or connections?
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When in 1919 Levi-Civita introduced connections, Einstein had another
choice. But he didn’t really take it. Why?

Metric or connections?

In Palatini’s formalism a (symmetric) connection � and a metric g are
given and varied independently. Spacetime is a triple (M, g, � ) where
the metric determines rods and clocks (i.e., it sets the fundamental
measurements of spacetime) while � determines the free fall

The second equation tells us a posteriori that ��is the Levi-Civita
connection of g. The first equation is then turned into the standard
Einstein equations. This is why Einstein considered the metric as the
fundamental object of Gravity

.. But this coincidence (between ��and the Levi-Civita’s connection of g) is
entirely due to the particular Lagrangian considered by Einstein, which is
the simplest… but not the only one possible!
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Furthermore Einstein didn’t recognize that Palatini method privileges
the affine structure towards the metric structure

Metric or connections?

In fact the Einstein-Palatini Lagrangian contains only derivatives of �,
that is the real dynamical field. The metric g has no dynamics since it
enters the Lagrangian as a “Lagrange multiplier”

The metric g gains a dynamics from that of �

The dynamics of � tells us that a sort of Einstein’s equation holds for 
the Ricci’s tensor of �

This dynamics is obtained by varying the Lagrangian with respect to the 
metric.These are 10 equations. Other 40 equations come out when varying the 
Lagrangian with respect to the connection �. These additional equations 
govern the form of � and impose it to be the Levi-Civita connection of the 
metric. The first equation then transforms into Einstein Equations.

In Palatini’s formalism are now equations.

The fact that � is the Levi-Civita connection of g is no longer an
assumption but becomes an outcome of field equations!
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Among the different Theories of Gravity,
we really should prefer the simplest (in
the sense of the one with the simplest
Lagrangian)?

Metric or connections?
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In Geometry we are forced by Nature to
consider variational principles different
from the simplest. Why should be so
strange that the same happens in Gravity?

Metric or connections?
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Metric or connections?

The universality properties for non-linear theories of gravity, 
written in the Palatini form, tell us that the true dynamical field is
� and not the metric g .

The metric g is no longer a Lagrange multiplier, but still has no
dynamics since it enters algebraically the Lagrangian. However g gains
dynamics from the dynamics of the connection �.

The connection is the Gravitational Field and, as such, it is the
fundamental field in the Lagrangian. The metric g enters the Lagrangian
with an “ancillary role.”

It reflects the fundamental need we have to define lenght and distances,
as well as areas and volumes. It defines rods & clocks, that we use to
make experiments. It defines the causal structure of spacetime.

But it has no dynamical role!

There is no reason to assume g to be the potential for � !

Nor that it has to be a true field just because it appears in 
the action !
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Metric or connections?

Newtonian and Galilean Physics are based on the Geometry of Euclidean
space. 

Both the affine and the metric structure enter the game.

These two structures are separated, one is not obtained from the other. 

The structure of Newtonian Physics is a subtle mix-up of both
structures…… but the principle of inertia selects the family of parallel
lines, that become “more fundamental” than the metric structure!

The Physics of Gravitation is based on the Geometry of a curved 4D
spacetime. An affine and a metric structure enter the game.

These two structures are separated. One is not obtained from the other.
The structure of Gravitational Physics is a subtle mix-up of both structures.

… but the principle of equivalence selects the family of geodesics of �, that
become “more fundamental” than the metric structure of g ! The principle of 
equivalence selects the true dynamical field; rods & clocks follow up.
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Metric or connections?

There is another way to half the order of the equations: choosing a 
connection Γ as the fundamental variable, as Einstein did in 1923 in 
the case f (R) = R

But what happens in the generic case f(R)? 

Universality properties state that in vacuum (i.e. if the stress tensor
vanishes) field equations for the 10 + 40 variables still reduce to 
Einstein equations.
This time, however, the metric g that satisfies Einstein equations is no
longer the metric given a priori in the Lagrangian.

In fact it is a conformally related metric. The conformal factor
is the derivative f ’(R):  h = f ‘(R) g.
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Metric or connections?

And now we propose a new interpretation.  

The new metric (that preserves the causal structure of spacetime) 
introduces new rods & clocks, by means of which

redefine the correct

This way both and            may be interpreted as errors 
due to the wrong rods & clocks.

One has to set a different “gauge” in each point… and this “gauge”
depends on the curvature at that point.

Field equations tell us that rods & clocks we are using (defined by a
metric g that we like to use) measure different lenghts and different
time intervals according to the curvature. The true “ gravitational
metric ” is not g but the conformally related metric h. Therefore
curvature effects are not measured exactly by g but rather by h. This
new metric is a fundamental field, determined by dynamics. The
original metric g is “frozen.”
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Metric or connections?

What can we say about conformal invariance of non-linear theories under 
Palatini form? They are conformally invariant!

If one perfors a conformal transformation, then the Lagrangian changes. 

What happens if we impose variations with respect to the conformal
factor? 

The new equation turns out to be equivalent to the master equation, so 
that only transformations with constant factor are allowed. 

There are no conformal degrees of freedom.
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Extended theories of 
Gravity

Dark Energy and �

WHY?

Curvature invariants should be taken into
account

We must suitably discriminate among theories 
of gravity!!!

§ QFT on curved spacetimes
§ String/M-theory corrections

§ Brane-world models

§ Cosmological constant (�) 
§ Time varing �

§ Scalar field theories
§ Phantom fields

§ Phenomenological Theories

§ Exotic matter
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We need to investigate the EP:

§ discriminating among theories of gravity

§ its validity at classical and quantum level

§ Investigating geodesic and causal structure

The role of Equivalence Principle
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EP is the physical foundation of any metric theory of gravity

The first formulation of EP comes out from the theory of
gravitation formulates by Galileo and Newton

the “inertial mass” mi and the “gravitational
mass” mg of any object are equivalent

Weak Equivalence Principle (WEP)

The role of Equivalence Principle
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The role of Equivalence Principle

Einstein Equivalence Principle states:

§ Weak Equivalence Principle is valid;

§ the outcome of any local non-gravitational 
test experiment is independent of velocity 
of free-falling apparatus;

§ the outcome of any local non-gravitational 
test experiment is independent of where and 
when in the Universe it is performed.
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The role of Equivalence Principle

One defines as “local non-gravitational experiment” an experiment 
performed in a small-size & freely falling laboratory

One gets that the gravitational interaction depends on the 
curvature of space-time, i.e. the postulates of any metric 
theory of gravity have to be satisfied

§ space-time is endowed with a metric gμν;

§ the world lines of test bodies are geodesics of the metric;

§ in local freely falling frames, called local Lorentz frames,
the non-gravitational laws of physics are those of Special
Relativity;
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The role of Equivalence Principle

One of the predictions of this principle is the 
gravitational red-shift, experimentally verified by 
Pound and Rebka in 1960

Gravitational interactions are excluded from WEP 
and Einstein EP

In order to classify alternative theories of gravity, the 
Gravitational WEP and the Strong Equivalence Principle 
(SEP) has to be introduced
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The role of Equivalence Principle

The SEP extends the Einstein EP by including all the
laws of physics in its terms:

§ WEP is valid for self-gravitating bodies as well as for
test bodies (Gravitational Weak Equivalence Principle);

§ the outcome of any local test experiment is independent
of the velocity of the free-falling apparatus;

§ the outcome of any local test experiment is independent
of where and when in the Universe it is performed.

The SEP contains the Einstein Equivalence Principle, 
when gravitational forces are neglected. 
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The role of Equivalence Principle

Many authors claim that the only theory coherent with 
the Strong Equivalence Principle is GR

An extremely important issue is related to the
consistency of Equivalence Principle with respect to the
Quantum Mechanics.

Some phenomena, like neutrino oscillations could violate 
it if induced by the gravitational field.

GR is not the only theory of gravitation and, several 
alternative theories of gravity have been investigated from
the 60’s, considering the space-time to be “special 
relativistic” at a background level and treating 
gravitation as a Lorentz-invariant field on the background
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The role of Equivalence Principle

Two different classes of experiments have to be considered:

§ the first ones testing the foundations of gravitation 
theory (among them the EP)

§ the second ones testing the metric theories of gravity 
where space-time is endowed with a metric tensor (EP could 
be violated at quantum level).

For several fundamental reasons extra fields might be 
necessary to describe the gravitation, e.g. scalar
fields or higher-order corrections in curvature 
invariants.
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The role of Equivalence Principle

Two sets of equations can be distinguished

§ The first ones couple the gravitational fields to the non–
gravitational contents of the Universe, i.e. the matter 
distribution, the electromagnetic fields, etc...

§ The second set of equations gives the evolution of non–
gravitational fields.

Within the framework of metric theories, these laws depend 
only on the metric: this is a consequence of the EEP 
and the so-called ”minimal coupling”.
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Several theories  are characterized by  the fact that  
a scalar field (or more than one scalar field) is  
coupled or not to gravity and ordinary matter

• The  introduction  of  a  scalar  field  gives  rise  typically  to  a  possible
“violation”  of  the  Einstein  Equivalence  Principle  (EEP).  

There are several reasons to introduce a scalar field:  

*  Scalar fields are unavoidable for theories 
aimed to unify gravity with the other fundamental forces: e.g. 
Superstring, Supergravity (SUGRA), M-theories. 

*  Scalar fields appear both in particle physics and cosmology: 
- the Higgs boson in the Standard Model
- the dilaton entering the supermultiplet of higher dimensional gravity  
- the super-partner  of spin ½ in SUGRA. 
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The variation with respect to the metric tensor gives

Trace equation

In order to distinguish competing theories, a possibility
is related to the so-called “fifth force” approach.
For example, the case of f(R)-gravity: 
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In  the Newtonian limit, 
let us consider the perturbation of the metric
with respect to the Minkowskin background

The metric entries can be developed as
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Fifth force

Experimental bounds

As general solution:
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Conclusions

§ Several shortcomings in standard General Relativity

§ We have to test the fundamental gravitational
fields. Is it g or Γ ?

§ Coincidence of geodesic and causal structures strictly 
depends on the validity of the Equivalence Principle
(Levi-Civita)

§ Discrimination of gravitational theories at quantum level

§ Tools: atomic clocks, free fall, space-craft (STE-QUEST)
see Altschul et al. Adv. Space. Res. 55, 501 (2015).

WORK IN PROGRESS!!!
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